BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32850369)

  • 1. Gene Co-expression Is Distance-Dependent in Breast Cancer.
    García-Cortés D; de Anda-Jáuregui G; Fresno C; Hernández-Lemus E; Espinal-Enríquez J
    Front Oncol; 2020; 10():1232. PubMed ID: 32850369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Co-Expression in Breast Cancer: A Matter of Distance.
    González-Espinoza A; Zamora-Fuentes J; Hernández-Lemus E; Espinal-Enríquez J
    Front Oncol; 2021; 11():726493. PubMed ID: 34868919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations.
    García-Cortés D; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2021; 12():629475. PubMed ID: 33959148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Long Distance Co-Expression in Lung Cancer.
    Andonegui-Elguera SD; Zamora-Fuentes JM; Espinal-Enríquez J; Hernández-Lemus E
    Front Genet; 2021; 12():625741. PubMed ID: 33777098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Transcription Factors in the Loss of Inter-Chromosomal Co-Expression for Breast Cancer Subtypes.
    Trujillo-Ortíz R; Espinal-Enríquez J; Hernández-Lemus E
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNVs in 8q24.3 do not influence gene co-expression in breast cancer subtypes.
    Hernández-Gómez C; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2023; 14():1141011. PubMed ID: 37274786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Expression and Co-expression Networks Are Strongly Altered Through Stages in Clear Cell Renal Carcinoma.
    Zamora-Fuentes JM; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2020; 11():578679. PubMed ID: 33240325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. k-core genes underpin structural features of breast cancer.
    Dorantes-Gilardi R; García-Cortés D; Hernández-Lemus E; Espinal-Enríquez J
    Sci Rep; 2021 Aug; 11(1):16284. PubMed ID: 34381069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Information Theoretical Multilayer Network Approach to Breast Cancer Transcriptional Regulation.
    Ochoa S; de Anda-Jáuregui G; Hernández-Lemus E
    Front Genet; 2021; 12():617512. PubMed ID: 33815463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Copy Number Variants in Gene Co-Expression Patterns for Luminal B Breast Tumors.
    Hernández-Gómez C; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2022; 13():806607. PubMed ID: 35432489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly connected, non-redundant microRNA functional control in breast cancer molecular subtypes.
    de Anda-Jáuregui G; Espinal-Enríquez J; Hernández-Lemus E
    Interface Focus; 2021 Jun; 11(4):20200073. PubMed ID: 34123357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition.
    Fredlund E; Staaf J; Rantala JK; Kallioniemi O; Borg A; Ringnér M
    Breast Cancer Res; 2012 Jul; 14(4):R113. PubMed ID: 22839103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing.
    Baslan T; Kendall J; Volyanskyy K; McNamara K; Cox H; D'Italia S; Ambrosio F; Riggs M; Rodgers L; Leotta A; Song J; Mao Y; Wu J; Shah R; Gularte-Mérida R; Chadalavada K; Nanjangud G; Varadan V; Gordon A; Curtis C; Krasnitz A; Dimitrova N; Harris L; Wigler M; Hicks J
    Elife; 2020 May; 9():. PubMed ID: 32401198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach.
    Srihari S; Kalimutho M; Lal S; Singla J; Patel D; Simpson PT; Khanna KK; Ragan MA
    Mol Biosyst; 2016 Mar; 12(3):963-72. PubMed ID: 26805938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data.
    Aure MR; Steinfeld I; Baumbusch LO; Liestøl K; Lipson D; Nyberg S; Naume B; Sahlberg KK; Kristensen VN; Børresen-Dale AL; Lingjærde OC; Yakhini Z
    PLoS One; 2013; 8(1):e53014. PubMed ID: 23382830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes.
    de Anda-Jáuregui G; Velázquez-Caldelas TE; Espinal-Enríquez J; Hernández-Lemus E
    Front Physiol; 2016; 7():568. PubMed ID: 27920729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconvolution of DNA methylation identifies differentially methylated gene regions on 1p36 across breast cancer subtypes.
    Titus AJ; Way GP; Johnson KC; Christensen BC
    Sci Rep; 2017 Sep; 7(1):11594. PubMed ID: 28912426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes.
    Chen J; Xu J; Li Y; Zhang J; Chen H; Lu J; Wang Z; Zhao X; Xu K; Li Y; Li X; Zhang Y
    Oncotarget; 2017 Feb; 8(6):10171-10184. PubMed ID: 28052038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration.
    Terkelsen T; Russo F; Gromov P; Haakensen VD; Brunak S; Gromova I; Krogh A; Papaleo E
    Breast Cancer Res; 2020 Jun; 22(1):73. PubMed ID: 32605588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-Seq based genome-wide analysis reveals loss of inter-chromosomal regulation in breast cancer.
    Espinal-Enríquez J; Fresno C; Anda-Jáuregui G; Hernández-Lemus E
    Sci Rep; 2017 May; 7(1):1760. PubMed ID: 28496157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.