These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
609 related articles for article (PubMed ID: 32850630)
1. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20. Lin C Front Chem; 2020; 8():592. PubMed ID: 32850630 [TBL] [Abstract][Full Text] [Related]
2. Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Wei M; Xiao K; Walters G; Lin R; Zhao Y; Saidaminov MI; Todorović P; Johnston A; Huang Z; Chen H; Li A; Zhu J; Yang Z; Wang YK; Proppe AH; Kelley SO; Hou Y; Voznyy O; Tan H; Sargent EH Adv Mater; 2020 Mar; 32(12):e1907058. PubMed ID: 32030824 [TBL] [Abstract][Full Text] [Related]
3. Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells. Liu Z; Cao F; Wang M; Wang M; Li L Angew Chem Int Ed Engl; 2020 Mar; 59(10):4161-4167. PubMed ID: 31867802 [TBL] [Abstract][Full Text] [Related]
4. Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials. Park HH Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010061 [TBL] [Abstract][Full Text] [Related]
5. Rational Strategies for Efficient Perovskite Solar Cells. Seo J; Noh JH; Seok SI Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188 [TBL] [Abstract][Full Text] [Related]
6. Passivation of the grain boundaries of CH Guo Q; Yuan F; Zhang B; Zhou S; Zhang J; Bai Y; Fan L; Hayat T; Alsaedi A; Tan Z Nanoscale; 2018 Dec; 11(1):115-124. PubMed ID: 30525161 [TBL] [Abstract][Full Text] [Related]
7. All-Inorganic CsPbX Zhang J; Hodes G; Jin Z; Liu SF Angew Chem Int Ed Engl; 2019 Oct; 58(44):15596-15618. PubMed ID: 30861267 [TBL] [Abstract][Full Text] [Related]
8. Promoting the Efficiency and Stability of CsPbIBr Liu P; Yang X; Chen Y; Xiang H; Wang W; Ran R; Zhou W; Shao Z ACS Appl Mater Interfaces; 2020 May; 12(21):23984-23994. PubMed ID: 32352277 [TBL] [Abstract][Full Text] [Related]
9. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708 [TBL] [Abstract][Full Text] [Related]
10. High-Performance CsPbIBr Zhang B; Bi W; Wu Y; Chen C; Li H; Song Z; Dai Q; Xu L; Song H ACS Appl Mater Interfaces; 2019 Sep; 11(37):33868-33878. PubMed ID: 31441638 [TBL] [Abstract][Full Text] [Related]
11. Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr Yang S; Wang L; Gao L; Cao J; Han Q; Yu F; Kamata Y; Zhang C; Fan M; Wei G; Ma T ACS Appl Mater Interfaces; 2020 Mar; 12(12):13931-13940. PubMed ID: 32119775 [TBL] [Abstract][Full Text] [Related]
12. All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges. Maafa IM Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630874 [TBL] [Abstract][Full Text] [Related]
13. All-inorganic Sn-based Perovskite Solar Cells: Status, Challenges, and Perspectives. Liu Y; Gao W; Ran C; Dong H; Sun N; Ran X; Xia Y; Song L; Chen Y; Huang W ChemSusChem; 2020 Dec; 13(24):6477-6497. PubMed ID: 32902919 [TBL] [Abstract][Full Text] [Related]
14. Decreased surface defects and non-radiative recombination Kara DA; Cirak D; Gultekin B Phys Chem Chem Phys; 2022 May; 24(17):10384-10393. PubMed ID: 35438697 [TBL] [Abstract][Full Text] [Related]
15. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Du B; He K; Zhao X; Li B Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158 [TBL] [Abstract][Full Text] [Related]
16. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. Shi L; Young TL; Kim J; Sheng Y; Wang L; Chen Y; Feng Z; Keevers MJ; Hao X; Verlinden PJ; Green MA; Ho-Baillie AWY ACS Appl Mater Interfaces; 2017 Aug; 9(30):25073-25081. PubMed ID: 28700216 [TBL] [Abstract][Full Text] [Related]
17. Review of Interface Passivation of Perovskite Layer. Wu Y; Wang D; Liu J; Cai H Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803757 [TBL] [Abstract][Full Text] [Related]
18. Simultaneously Enhancing Efficiency and Stability of Perovskite Solar Cells Through Crystal Cross-Linking Using Fluorophenylboronic Acid. Li M; Gao H; Yu L; Tang S; Peng Y; Zheng C; Xu L; Tao Y; Chen R; Huang W Small; 2021 Sep; 17(38):e2102090. PubMed ID: 34382332 [TBL] [Abstract][Full Text] [Related]
19. Chlorides, other Halides, and Pseudo-Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. Cheng F; Zhang J; Pauporté T ChemSusChem; 2021 Sep; 14(18):3665-3692. PubMed ID: 34328278 [TBL] [Abstract][Full Text] [Related]
20. High-performance Ruddlesden-Popper two-dimensional perovskite solar cells Liu Z; Wang L; Xie X; Xu C; Tang J; Li W Phys Chem Chem Phys; 2022 Jul; 24(26):15912-15919. PubMed ID: 35730667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]