BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 32850630)

  • 1. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20.
    Lin C
    Front Chem; 2020; 8():592. PubMed ID: 32850630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials.
    Park HH
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer.
    Wei M; Xiao K; Walters G; Lin R; Zhao Y; Saidaminov MI; Todorović P; Johnston A; Huang Z; Chen H; Li A; Zhu J; Yang Z; Wang YK; Proppe AH; Kelley SO; Hou Y; Voznyy O; Tan H; Sargent EH
    Adv Mater; 2020 Mar; 32(12):e1907058. PubMed ID: 32030824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells.
    Liu Z; Cao F; Wang M; Wang M; Li L
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):4161-4167. PubMed ID: 31867802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passivation of the grain boundaries of CH
    Guo Q; Yuan F; Zhang B; Zhou S; Zhang J; Bai Y; Fan L; Hayat T; Alsaedi A; Tan Z
    Nanoscale; 2018 Dec; 11(1):115-124. PubMed ID: 30525161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Inorganic CsPbX
    Zhang J; Hodes G; Jin Z; Liu SF
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15596-15618. PubMed ID: 30861267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoting the Efficiency and Stability of CsPbIBr
    Liu P; Yang X; Chen Y; Xiang H; Wang W; Ran R; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2020 May; 12(21):23984-23994. PubMed ID: 32352277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules.
    Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance CsPbIBr
    Zhang B; Bi W; Wu Y; Chen C; Li H; Song Z; Dai Q; Xu L; Song H
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33868-33878. PubMed ID: 31441638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr
    Yang S; Wang L; Gao L; Cao J; Han Q; Yu F; Kamata Y; Zhang C; Fan M; Wei G; Ma T
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13931-13940. PubMed ID: 32119775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges.
    Maafa IM
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-inorganic Sn-based Perovskite Solar Cells: Status, Challenges, and Perspectives.
    Liu Y; Gao W; Ran C; Dong H; Sun N; Ran X; Xia Y; Song L; Chen Y; Huang W
    ChemSusChem; 2020 Dec; 13(24):6477-6497. PubMed ID: 32902919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased surface defects and non-radiative recombination
    Kara DA; Cirak D; Gultekin B
    Phys Chem Chem Phys; 2022 May; 24(17):10384-10393. PubMed ID: 35438697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.
    Shi L; Young TL; Kim J; Sheng Y; Wang L; Chen Y; Feng Z; Keevers MJ; Hao X; Verlinden PJ; Green MA; Ho-Baillie AWY
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25073-25081. PubMed ID: 28700216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of Interface Passivation of Perovskite Layer.
    Wu Y; Wang D; Liu J; Cai H
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneously Enhancing Efficiency and Stability of Perovskite Solar Cells Through Crystal Cross-Linking Using Fluorophenylboronic Acid.
    Li M; Gao H; Yu L; Tang S; Peng Y; Zheng C; Xu L; Tao Y; Chen R; Huang W
    Small; 2021 Sep; 17(38):e2102090. PubMed ID: 34382332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorides, other Halides, and Pseudo-Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells.
    Cheng F; Zhang J; Pauporté T
    ChemSusChem; 2021 Sep; 14(18):3665-3692. PubMed ID: 34328278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance Ruddlesden-Popper two-dimensional perovskite solar cells
    Liu Z; Wang L; Xie X; Xu C; Tang J; Li W
    Phys Chem Chem Phys; 2022 Jul; 24(26):15912-15919. PubMed ID: 35730667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.