These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32850693)

  • 1. Tissue-on-a-Chip: Microphysiometry With Human 3D Models on Transwell Inserts.
    Schmidt C; Markus J; Kandarova H; Wiest J
    Front Bioeng Biotechnol; 2020; 8():760. PubMed ID: 32850693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface.
    Alexander FA; Eggert S; Wiest J
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29466319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel lab-on-a-chip platform for spheroid metabolism monitoring.
    Alexander F; Eggert S; Wiest J
    Cytotechnology; 2018 Feb; 70(1):375-386. PubMed ID: 29032507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barrier-on-a-Chip with a Modular Architecture and Integrated Sensors for Real-Time Measurement of Biological Barrier Function.
    Zoio P; Lopes-Ventura S; Oliva A
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated transepithelial electrical resistance measurements of the EpiDerm reconstructed human epidermis model.
    Alexander FA; Wiest J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():469-472. PubMed ID: 28268373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling 3D hepatocyte spheroids for microphysiometry.
    Eggert S; Alexander FA; Wiest J
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1617-1620. PubMed ID: 29060192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3D Microphysiometry Facilitates High-Content and Highly Reproducible Oxygen Measurements within 3D Cell Culture Models.
    Eggert S; Gutbrod MS; Liebsch G; Meier R; Meinert C; Hutmacher DW
    ACS Sens; 2021 Mar; 6(3):1248-1260. PubMed ID: 33621068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transwell Insert-Embedded Microfluidic Devices for Time-Lapse Monitoring of Alveolar Epithelium Barrier Function under Various Stimulations.
    Chang SH; Ko PL; Liao WH; Peng CC; Tung YC
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct quantification of transendothelial electrical resistance in organs-on-chips.
    van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI
    Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Open-Source Add-On EVOM
    Raut B; Chen LJ; Hori T; Kaji H
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Real-Time Transendothelial Electrical Resistance Monitoring for an In Vitro Blood-Brain Barrier System.
    Tu KH; Yu LS; Sie ZH; Hsu HY; Al-Jamal KT; Wang JT; Chiang YY
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems.
    Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A
    Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Cost Method and Biochip for Measuring the Trans-Epithelial Electrical Resistance (TEER) of Esophageal Epithelium.
    Poenar DP; Yang G; Wan WK; Feng S
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D.
    Jamieson JJ; Linville RM; Ding YY; Gerecht S; Searson PC
    Fluids Barriers CNS; 2019 Jun; 16(1):15. PubMed ID: 31167667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of an in vitro screening model to assess phosgene inhalation injury.
    Olivera DS; Hoard-Fruchey H; Sciuto AM
    Toxicol Mech Methods; 2017 Jan; 27(1):45-51. PubMed ID: 27696922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human 3D Gastrointestinal Microtissue Barrier Function As a Predictor of Drug-Induced Diarrhea.
    Peters MF; Landry T; Pin C; Maratea K; Dick C; Wagoner MP; Choy AL; Barthlow H; Snow D; Stevens Z; Armento A; Scott CW; Ayehunie S
    Toxicol Sci; 2019 Mar; 168(1):3-17. PubMed ID: 30364994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell.
    Mukherjee T; Squillantea E; Gillespieb M; Shao J
    Drug Deliv; 2004; 11(1):11-8. PubMed ID: 15168786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies.
    Lin H; Li H; Cho HJ; Bian S; Roh HJ; Lee MK; Kim JS; Chung SJ; Shim CK; Kim DD
    J Pharm Sci; 2007 Feb; 96(2):341-50. PubMed ID: 17080426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PerfuPul-A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia.
    Carius P; Dubois A; Ajdarirad M; Artzy-Schnirman A; Sznitman J; Schneider-Daum N; Lehr CM
    Front Bioeng Biotechnol; 2021; 9():743236. PubMed ID: 34692661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.