These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32850696)

  • 1. Differences in Muscle Synergy Symmetry Between Subacute Post-stroke Patients With Bioelectrically-Controlled Exoskeleton Gait Training and Conventional Gait Training.
    Tan CK; Kadone H; Watanabe H; Marushima A; Hada Y; Yamazaki M; Sankai Y; Matsumura A; Suzuki K
    Front Bioeng Biotechnol; 2020; 8():770. PubMed ID: 32850696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral Symmetry of Synergies in Lower Limb Muscles of Acute Post-stroke Patients After Robotic Intervention.
    Tan CK; Kadone H; Watanabe H; Marushima A; Yamazaki M; Sankai Y; Suzuki K
    Front Neurosci; 2018; 12():276. PubMed ID: 29922121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study.
    Mizukami M; Yoshikawa K; Kawamoto H; Sano A; Koseki K; Asakwa Y; Iwamoto K; Nagata H; Tsurushima H; Nakai K; Marushima A; Sankai Y; Matsumura A
    Disabil Rehabil Assist Technol; 2017 Feb; 12(2):197-204. PubMed ID: 27017889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study.
    Watanabe H; Goto R; Tanaka N; Matsumura A; Yanagi H
    NeuroRehabilitation; 2017; 40(3):363-367. PubMed ID: 28222558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related differences in gait symmetry obtained from kinematic synergies and muscle synergies of lower limbs during childhood.
    Xiong Q; Wan J; Jiang S; Liu Y
    Biomed Eng Online; 2022 Sep; 21(1):61. PubMed ID: 36058910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Gait Treatment With a Single-Leg Hybrid Assistive Limb System After Acute Stroke: A Non-randomized Clinical Trial.
    Watanabe H; Marushima A; Kadone H; Ueno T; Shimizu Y; Kubota S; Hino T; Sato M; Ito Y; Hayakawa M; Tsurushima H; Takada T; Tsukada A; Fujimori H; Sato N; Maruo K; Kawamoto H; Hada Y; Yamazaki M; Sankai Y; Ishikawa E; Matsumaru Y; Matsumura A
    Front Neurosci; 2019; 13():1389. PubMed ID: 32038125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular Activity Modulation During Post-operative Walking With Hybrid Assistive Limb (HAL) in a Patient With Thoracic Myelopathy Due to Ossification of Posterior Longitudinal Ligament: A Case Report.
    Kadone H; Kubota S; Abe T; Noguchi H; Miura K; Koda M; Shimizu Y; Hada Y; Sankai Y; Suzuki K; Yamazaki M
    Front Neurol; 2020; 11():102. PubMed ID: 32296380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study.
    Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H
    Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy and Safety Study of Wearable Cyborg HAL (Hybrid Assistive Limb) in Hemiplegic Patients With Acute Stroke (EARLY GAIT Study): Protocols for a Randomized Controlled Trial.
    Watanabe H; Marushima A; Kadone H; Shimizu Y; Kubota S; Hino T; Sato M; Ito Y; Hayakawa M; Tsurushima H; Maruo K; Hada Y; Ishikawa E; Matsumaru Y
    Front Neurosci; 2021; 15():666562. PubMed ID: 34276288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal gait characteristic changes with gait training using the hybrid assistive limb for chronic stroke patients.
    Tanaka H; Nankaku M; Nishikawa T; Hosoe T; Yonezawa H; Mori H; Kikuchi T; Nishi H; Takagi Y; Miyamoto S; Ikeguchi R; Matsuda S
    Gait Posture; 2019 Jun; 71():205-210. PubMed ID: 31078010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of a Walking Program Involving the Hybrid Assistive Limb Robotic Exoskeleton Suit for Improving Walking Ability in Stroke Patients: Protocol for a Randomized Controlled Trial.
    Tsurushima H; Mizukami M; Yoshikawa K; Ueno T; Hada Y; Gosho M; Kohno Y; Hashimoto K; Iizumi Y; Kikuchi T; Matsumura A;
    JMIR Res Protoc; 2019 Oct; 8(10):e14001. PubMed ID: 31605515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Gait Recovery after a Combination of Conventional Therapy and Overground Robot-Assisted Gait Training Is Not Associated with Significant Changes in Muscle Activation Pattern: An EMG Preliminary Study on Subjects Subacute Post Stroke.
    Infarinato F; Romano P; Goffredo M; Ottaviani M; Galafate D; Gison A; Petruccelli S; Pournajaf S; Franceschini M
    Brain Sci; 2021 Apr; 11(4):. PubMed ID: 33915808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Randomized comparison trial of gait training with and without compelled weight-shift therapy in individuals with chronic stroke.
    Sheikh M; Azarpazhooh MR; Hosseini HA
    Clin Rehabil; 2016 Nov; 30(11):1088-1096. PubMed ID: 26545392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control.
    Yoshimoto T; Shimizu I; Hiroi Y; Kawaki M; Sato D; Nagasawa M
    Int J Rehabil Res; 2015 Dec; 38(4):338-43. PubMed ID: 26288120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke.
    Wall A; Borg J; Vreede K; Palmcrantz S
    PLoS One; 2020; 15(2):e0229707. PubMed ID: 32109255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Design of FastFES Treatment to Improve Propulsive Force Symmetry During Post-stroke Gait: A Feasibility Study.
    Sauder NR; Meyer AJ; Allen JL; Ting LH; Kesar TM; Fregly BJ
    Front Neurorobot; 2019; 13():80. PubMed ID: 31632261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: A randomized controlled clinical trial.
    Ribeiro TS; Silva EMGS; Silva IAP; Costa MFP; Cavalcanti FAC; Lindquist AR
    Gait Posture; 2017 May; 54():229-235. PubMed ID: 28351743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of robotic-assisted gait training combined with conventional physical therapy on paretic hip joint stiffness and kinematics between subacute and chronic hemiparetic stroke.
    Park JH; Shin YI; You JSH; Park MS
    NeuroRehabilitation; 2018; 42(2):181-190. PubMed ID: 29562554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral coordination and gait symmetry after body-weight supported treadmill training for persons with chronic stroke.
    Combs SA; Dugan EL; Ozimek EN; Curtis AB
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):448-53. PubMed ID: 23453726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke.
    Androwis GJ; Pilkar R; Ramanujam A; Nolan KJ
    Front Neurol; 2018; 9():630. PubMed ID: 30131756
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.