These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32850700)

  • 1. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds.
    Saidy NT; Shabab T; Bas O; Rojas-González DM; Menne M; Henry T; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Front Bioeng Biotechnol; 2020; 8():793. PubMed ID: 32850700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Melt Electrowriting and Fused Deposition Modeling to Fabricate Hybrid Scaffolds Supportive of Accelerated Bone Regeneration.
    Eichholz KF; Pitacco P; Burdis R; Chariyev-Prinz F; Barceló X; Tornifoglio B; Paetzold R; Garcia O; Kelly DJ
    Adv Healthc Mater; 2024 Jan; 13(3):e2302057. PubMed ID: 37933556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine.
    Shirwaiker RA; Fisher MB; Anderson B; Schuchard KG; Warren PB; Maze B; Grondin P; Ligler FS; Pourdeyhimi B
    Tissue Eng Part C Methods; 2020 Jul; 26(7):364-374. PubMed ID: 32552453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrowriting of SU-8 Microfibers.
    Sandoval Salaiza DA; Valsangiacomo N; Dinç NU; Yildirim M; Madrid-Wolff J; Bertsch A; Jiguet S; Dalton PD; Brugger J; Moser C
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process?
    Bartolf-Kopp M; Jungst T
    Adv Healthc Mater; 2024 Apr; ():e2400426. PubMed ID: 38607966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models.
    Cedillo-Servin G; Dahri O; Meneses J; van Duijn J; Moon H; Sage F; Silva J; Pereira A; Magalhães FD; Malda J; Geijsen N; Pinto AM; Castilho M
    Small; 2024 Mar; 20(12):e2307178. PubMed ID: 37950402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials and Strategies to Enhance Melt Electrowriting Potential.
    Saiz PG; Reizabal A; Vilas-Vilela JL; Dalton PD; Lanceros-Mendez S
    Adv Mater; 2024 Jun; 36(24):e2312084. PubMed ID: 38447132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers-Progress and Limitations.
    King WE; Bowlin GL
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Microfibrous Scaffold with Aligned Topography Produced via a Combination of Melt-Extrusion Additive Manufacturing and Porogen Leaching for In Vitro Skeletal Muscle Modeling.
    Spedicati M; Zoso A; Mortati L; Chiono V; Marcello E; Carmagnola I
    Bioengineering (Basel); 2024 Mar; 11(4):. PubMed ID: 38671754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [n]Cycloparaphenylenes as Compatible Fluorophores for Melt Electrowriting.
    Hall PC; Reid HW; Liashenko I; Tandon B; O'Neill KL; Paxton NC; Lindberg GCJ; Jasti R; Dalton PD
    Small; 2024 Jun; ():e2400882. PubMed ID: 38845075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated brightfield layerwise evaluation in three-dimensional micropatterning via two-photon polymerization.
    Sun J; Howes AM; Jia S; Burrow JA; Felzenszwalb PF; Dawson MR; Shao C; Toussaint KC
    Opt Express; 2024 Mar; 32(7):12508-12519. PubMed ID: 38571071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Intelligent and Efficient Workflow for Path-Oriented 3D Bioprinting of Tubular Scaffolds.
    Baroth T; Loewner S; Heymann H; Cholewa F; Blume H; Blume C
    3D Print Addit Manuf; 2024 Feb; 11(1):323-332. PubMed ID: 38389675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-Electrohydrodynamic Jetting of Aqueous Silk Fibroin Solutions.
    Reizabal A; Saiz PG; Luposchainsky S; Liashenko I; Chasko D; Lanceros-Méndez S; Lindberg G; Dalton PD
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1843-1855. PubMed ID: 37988293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
    Snyder Y; Jana S
    Prog Mater Sci; 2023 Oct; 139():. PubMed ID: 37981978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed gradient scaffolds for osteochondral defects: Current status and perspectives.
    Du J; Zhu Z; Liu J; Bao X; Wang Q; Shi C; Zhao C; Xu G; Li D
    Int J Bioprint; 2023; 9(4):724. PubMed ID: 37323482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting.
    Cross-Najafi AA; Farag K; Chen AM; Smith LJ; Zhang W; Li P; Ekser B
    Transplantation; 2024 Feb; 108(2):357-368. PubMed ID: 37322580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-Writing Electrospun Functionalized Scaffolds for Periodontal Regeneration: In Vitro Studies.
    Bourdon L; Attik N; Belkessam L; Chevalier C; Bousige C; Brioude A; Salles V
    J Funct Biomater; 2023 May; 14(5):. PubMed ID: 37233373
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.