These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32850747)

  • 1. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process.
    Bator I; Karmainski T; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():899. PubMed ID: 32850747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Cell-Surface Modification for Optimized Foam Fractionation.
    Blesken CC; Bator I; Eberlein C; Heipieper HJ; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():572892. PubMed ID: 33195133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using
    Tiso T; Ihling N; Kubicki S; Biselli A; Schonhoff A; Bator I; Thies S; Karmainski T; Kruth S; Willenbrink AL; Loeschcke A; Zapp P; Jupke A; Jaeger KE; Büchs J; Blank LM
    Front Bioeng Biotechnol; 2020; 8():976. PubMed ID: 32974309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process.
    Bator I; Karmainski T; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():596414. PubMed ID: 33117791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of rhamnolipids by integrated foam adsorption in a bioreactor system.
    Anic I; Apolonia I; Franco P; Wichmann R
    AMB Express; 2018 Jul; 8(1):122. PubMed ID: 30043199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control.
    Jiang J; Zu Y; Li X; Meng Q; Long X
    Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating metabolic demand as an engineering strategy in
    Tiso T; Sabelhaus P; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Metab Eng Commun; 2016 Dec; 3():234-244. PubMed ID: 29142825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling Foam Fractionation and Foam Adsorption for Enhanced Biosurfactant Synthesis and Recovery.
    Blesken CC; Strümpfler T; Tiso T; Blank LM
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33353027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High titer heterologous rhamnolipid production.
    Beuker J; Barth T; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Dec; 6(1):124. PubMed ID: 27957724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.
    Beuker J; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Mar; 6(1):11. PubMed ID: 26860613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.
    Anic I; Nath A; Franco P; Wichmann R
    J Biotechnol; 2017 Sep; 258():181-189. PubMed ID: 28723386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant Production of
    Widberger J; Wittgens A; Klaunig S; Krämer M; Kissmann AK; Höfele F; Baur T; Weil T; Henkel M; Hausmann R; Bengelsdorf FR; Eikmanns BJ; Dürre P; Rosenau F
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel membrane stirrer system enables foam-free biosurfactant production.
    Bongartz P; Karmainski T; Meyer M; Linkhorst J; Tiso T; Blank LM; Wessling M
    Biotechnol Bioeng; 2023 May; 120(5):1269-1287. PubMed ID: 36705321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.