These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32850780)

  • 21. Development of the secondary palate in chick embryo: a light and electron microscopic and histochemical study.
    Shah RM; Crawford BJ
    Invest Cell Pathol; 1980; 3(4):319-28. PubMed ID: 7462016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of apoptosis in retinoic acid-induced cleft palate.
    Choi JW; Park HW; Kwon YJ; Park BY
    J Craniofac Surg; 2011 Sep; 22(5):1567-71. PubMed ID: 21959388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and spatial expression of Hoxa-2 during murine palatogenesis.
    Nazarali A; Puthucode R; Leung V; Wolf L; Hao Z; Yeung J
    Cell Mol Neurobiol; 2000 Jun; 20(3):269-90. PubMed ID: 10789828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinoic acid-induced alterations in the expression of growth factors in embryonic mouse palatal shelves.
    Abbott BD; Birnbaum LS
    Teratology; 1990 Dec; 42(6):597-610. PubMed ID: 2087681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium inhibits palatal fusion and osteogenic differentiation in palatal shelves in vitro.
    Meng L; Wang X; Torensma R; Von den Hoff JW; Bian Z
    Arch Oral Biol; 2015 Mar; 60(3):501-7. PubMed ID: 25555252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Midline fusion in the formation of the secondary palate anticipated by upregulation of keratin K5/6 and localized expression of vimentin mRNA in medial edge epithelium.
    Gibbins JR; Manthey A; Tazawa YM; Scott B; Bloch-Zupan A; Hunter N
    Int J Dev Biol; 1999 May; 43(3):237-44. PubMed ID: 10410903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunolocalization of fibroblast growth factor receptors 1 and 2 in mouse palate development.
    Lee S; Crisera CA; Erfani S; Maldonado TS; Lee JJ; Alkasab SL; Longaker MT
    Plast Reconstr Surg; 2001 Jun; 107(7):1776-84; discussion 1785-6. PubMed ID: 11391199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in human palatine bone location and tongue position during prenatal palatal closure.
    Kjaer I; Bach-Petersen S; Graem N; Kjaer T
    J Craniofac Genet Dev Biol; 1993; 13(1):18-23. PubMed ID: 8478415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Medial edge epithelium transforms to mesenchyme after embryonic palatal shelves fuse.
    Fitchett JE; Hay ED
    Dev Biol; 1989 Feb; 131(2):455-74. PubMed ID: 2463946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell behaviour and cleft palate in the mutant mouse, amputated.
    Flint OP
    J Embryol Exp Morphol; 1980 Aug; 58():131-42. PubMed ID: 7441149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in vascular pattern of the developing palate in normal and spontaneous cleft palate mouse embryos.
    Amin N; Ohashi Y; Chiba J; Yoshida S; Takano Y
    Cleft Palate Craniofac J; 1994 Sep; 31(5):332-44. PubMed ID: 7986793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative biochemistry of mouse and chick secondary-palate development in vivo and in vitro with particular emphasis on extracellular matrix molecules and the effects of growth factors on their synthesis.
    Foreman DM; Sharpe PM; Ferguson MW
    Arch Oral Biol; 1991; 36(6):457-71. PubMed ID: 1910328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disruption of Hedgehog Signaling by Vismodegib Leads to Cleft Palate and Delayed Osteogenesis in Experimental Design.
    Zhang S; Wang C; Xie C; Lai Y; Wu D; Gan G; Chen W
    J Craniofac Surg; 2017 Sep; 28(6):1607-1614. PubMed ID: 28863112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro development of the hamster and chick secondary palate.
    Shah RM; Crawford BJ; Greene RM; Suen RS; Burdett D; King KO; Wong DT
    J Craniofac Genet Dev Biol; 1985; 5(3):299-314. PubMed ID: 4044792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in Oral Structure and Tissue Interactions during Mouse vs. Human Palatogenesis: Implications for the Translation of Findings from Mice.
    Yu K; Deng M; Naluai-Cecchini T; Glass IA; Cox TC
    Front Physiol; 2017; 8():154. PubMed ID: 28360863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse.
    Zirzow S; Lüdtke TH; Brons JF; Petry M; Christoffels VM; Kispert A
    Dev Biol; 2009 Dec; 336(2):145-55. PubMed ID: 19769959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periderm cells covering palatal shelves have tight junctions and their desquamation reduces the polarity of palatal shelf epithelial cells in palatogenesis.
    Yoshida M; Shimono Y; Togashi H; Matsuzaki K; Miyoshi J; Mizoguchi A; Komori T; Takai Y
    Genes Cells; 2012 Jun; 17(6):455-72. PubMed ID: 22571182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans.
    Funato N; Yanagisawa H
    Arch Oral Biol; 2018 Nov; 95():149-155. PubMed ID: 30121012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.