These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 32850862)

  • 61. Sequential EMT-MET induces neuronal conversion through Sox2.
    He S; Chen J; Zhang Y; Zhang M; Yang X; Li Y; Sun H; Lin L; Fan K; Liang L; Feng C; Wang F; Zhang X; Guo Y; Pei D; Zheng H
    Cell Discov; 2017; 3():17017. PubMed ID: 28580167
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biological role of metabolic reprogramming of cancer cells during epithelial‑mesenchymal transition (Review).
    Li M; Bu X; Cai B; Liang P; Li K; Qu X; Shen L
    Oncol Rep; 2019 Feb; 41(2):727-741. PubMed ID: 30483813
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolomic and Transcriptional Analyses Reveal Atmospheric Oxygen During Human Induced Pluripotent Stem Cell Generation Impairs Metabolic Reprogramming.
    Spyrou J; Gardner DK; Harvey AJ
    Stem Cells; 2019 Aug; 37(8):1042-1056. PubMed ID: 31042329
    [TBL] [Abstract][Full Text] [Related]  

  • 64. EMT Factors and Metabolic Pathways in Cancer.
    Georgakopoulos-Soares I; Chartoumpekis DV; Kyriazopoulou V; Zaravinos A
    Front Oncol; 2020; 10():499. PubMed ID: 32318352
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy.
    Din ZU; Cui B; Wang C; Zhang X; Mehmood A; Peng F; Liu Q
    Mol Cell Biochem; 2024 Apr; ():. PubMed ID: 38622439
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Decoding the coupled decision-making of the epithelial-mesenchymal transition and metabolic reprogramming in cancer.
    Galbraith M; Levine H; Onuchic JN; Jia D
    iScience; 2023 Jan; 26(1):105719. PubMed ID: 36582834
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intracellular Transport in Cancer Metabolic Reprogramming.
    Sneeggen M; Guadagno NA; Progida C
    Front Cell Dev Biol; 2020; 8():597608. PubMed ID: 33195279
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Unraveling the 2,3-diketo-L-gulonic acid-dependent and -independent impacts of L-ascorbic acid on somatic cell reprogramming.
    Liang L; He M; Zhang Y; Wang C; Qin Z; Li Q; Yang T; Meng F; Zhou Y; Ge H; Song W; Chen S; Dong L; Ren Q; Li C; Guo L; Sun H; Zhang W; Pei D; Zheng H
    Cell Biosci; 2023 Nov; 13(1):218. PubMed ID: 38037169
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype.
    Carafa V; Altucci L; Nebbioso A
    Front Pharmacol; 2019; 10():38. PubMed ID: 30761005
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Critical roles and clinical perspectives of RNA methylation in cancer.
    Li G; Yao Q; Liu P; Zhang H; Liu Y; Li S; Shi Y; Li Z; Zhu W
    MedComm (2020); 2024 May; 5(5):e559. PubMed ID: 38721006
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mevalonate Metabolism in Cancer Stemness and Trained Immunity.
    Gruenbacher G; Thurnher M
    Front Oncol; 2018; 8():394. PubMed ID: 30298120
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolic Reprogramming of Castration-Resistant Prostate Cancer Cells as a Response to Chemotherapy.
    Petrella G; Corsi F; Ciufolini G; Germini S; Capradossi F; Pelliccia A; Torino F; Ghibelli L; Cicero DO
    Metabolites; 2022 Dec; 13(1):. PubMed ID: 36676990
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Metabolic Roadmap for Somatic Stem Cell Fate.
    Ly CH; Lynch GS; Ryall JG
    Cell Metab; 2020 Jun; 31(6):1052-1067. PubMed ID: 32433923
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis.
    Shabo I; Svanvik J; Lindström A; Lechertier T; Trabulo S; Hulit J; Sparey T; Pawelek J
    World J Clin Oncol; 2020 Mar; 11(3):121-135. PubMed ID: 32257843
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel Polyamine-Naphthalene Diimide Conjugates Targeting Histone Deacetylases and DNA for Cancer Phenotype Reprogramming.
    Pasini A; Marchetti C; Sissi C; Cortesi M; Giordano E; Minarini A; Milelli A
    ACS Med Chem Lett; 2017 Dec; 8(12):1218-1223. PubMed ID: 29259737
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolic Reprogramming in Kidney Diseases: Evidence and Therapeutic Opportunities.
    Li Y; Sha Z; Peng H
    Int J Nephrol; 2021; 2021():5497346. PubMed ID: 34733559
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Editorial: Metabolism As a Therapeutic Target.
    Columbano A; Giordano S
    Front Oncol; 2017; 7():266. PubMed ID: 29170733
    [No Abstract]   [Full Text] [Related]  

  • 78. Editorial: Cell Stress, Metabolic Reprogramming, and Cancer.
    Giannattasio S; Mirisola MG; Mazzoni C
    Front Oncol; 2018; 8():236. PubMed ID: 29988568
    [No Abstract]   [Full Text] [Related]  

  • 79. Erratum to: Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds.
    Seo JH; Jang SW; Jeon YJ; Eun SY; Hong YJ; Do JT; Chae JI; Choi HW
    J Microbiol Biotechnol; 2022 Dec; 32(12):1632. PubMed ID: 36575652
    [No Abstract]   [Full Text] [Related]  

  • 80. Editorial: Exploring Cancer Metabolic Reprogramming through Molecular Imaging.
    Podo F; Bhujwalla ZM; Iorio E
    Front Oncol; 2017; 7():79. PubMed ID: 28491821
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.