BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1094 related articles for article (PubMed ID: 32850977)

  • 1. Molecular Pathogenesis, Immunopathogenesis and Novel Therapeutic Strategy Against COVID-19.
    Chatterjee SK; Saha S; Munoz MNM
    Front Mol Biosci; 2020; 7():196. PubMed ID: 32850977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy.
    Conti P; Caraffa A; Gallenga CE; Ross R; Kritas SK; Frydas I; Younes A; Ronconi G
    J Biol Regul Homeost Agents; 2020; 34(6):1971-1975. PubMed ID: 33016027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does hereditary angioedema make COVID-19 worse?
    Xu Y; Liu S; Zhang Y; Zhi Y
    World Allergy Organ J; 2020 Sep; 13(9):100454. PubMed ID: 32834893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambroxol Hydrochloride Inhibits the Interaction between Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein's Receptor Binding Domain and Recombinant Human ACE2.
    Olaleye OA; Kaur M; Onyenaka CC
    bioRxiv; 2020 Sep; ():. PubMed ID: 32995775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor.
    Hati S; Bhattacharyya S
    ACS Omega; 2020 Jul; 5(26):16292-16298. PubMed ID: 32656452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment.
    Lau SKP; Lau CCY; Chan KH; Li CPY; Chen H; Jin DY; Chan JFW; Woo PCY; Yuen KY
    J Gen Virol; 2013 Dec; 94(Pt 12):2679-2690. PubMed ID: 24077366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Coronavirus Disease 2019 (COVID-19) and Cytokine Storms for More Effective Treatments from an Inflammatory Pathophysiology.
    Yokota S; Miyamae T; Kuroiwa Y; Nishioka K
    J Clin Med; 2021 Feb; 10(4):. PubMed ID: 33671159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COVID-19: Targeting Proteases in Viral Invasion and Host Immune Response.
    Seth S; Batra J; Srinivasan S
    Front Mol Biosci; 2020; 7():215. PubMed ID: 33195400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs.
    Gupta A; Gupta GS
    Mol Cell Biochem; 2021 Aug; 476(8):2917-2942. PubMed ID: 33745077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology of coronavirus disease 2019 for wound care professionals.
    Al-Benna S
    Int Wound J; 2020 Dec; 17(6):1935-1940. PubMed ID: 32986928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering mesenchymal stromal cells with neutralizing and anti-inflammatory capability against SARS-CoV-2 infection.
    Zhang X; Han P; Wang H; Xu Y; Li F; Li M; Fan L; Zhang H; Dai Q; Lin H; Qi X; Liang J; Wang X; Yang X
    Mol Ther Methods Clin Dev; 2021 Jun; 21():754-764. PubMed ID: 34007862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host Response to SARS-CoV2 and Emerging Variants in Pre-Existing Liver and Gastrointestinal Diseases.
    Nayak B; Lal G; Kumar S; Das CJ; Saraya A; Shalimar
    Front Cell Infect Microbiol; 2021; 11():753249. PubMed ID: 34760721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor.
    Maurya VK; Kumar S; Prasad AK; Bhatt MLB; Saxena SK
    Virusdisease; 2020 Jun; 31(2):179-193. PubMed ID: 32656311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells.
    Suzuki YJ; Nikolaienko SI; Dibrova VA; Dibrova YV; Vasylyk VM; Novikov MY; Shults NV; Gychka SG
    bioRxiv; 2020 Oct; ():. PubMed ID: 33052333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives.
    Saponaro F; Rutigliano G; Sestito S; Bandini L; Storti B; Bizzarri R; Zucchi R
    Front Mol Biosci; 2020; 7():588618. PubMed ID: 33195436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mechanisms and Animal Models of SARS-CoV-2 Infection.
    Jia W; Wang J; Sun B; Zhou J; Shi Y; Zhou Z
    Front Cell Dev Biol; 2021; 9():578825. PubMed ID: 33987176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients.
    Bosch-Barrera J; Martin-Castillo B; Buxó M; Brunet J; Encinar JA; Menendez JA
    J Clin Med; 2020 Jun; 9(6):. PubMed ID: 32517353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells.
    Senthil Kumar KJ; Gokila Vani M; Wang CS; Chen CC; Chen YC; Lu LP; Huang CH; Lai CS; Wang SY
    Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32575476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SARS-CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges.
    McGill AR; Kahlil R; Dutta R; Green R; Howell M; Mohapatra S; Mohapatra SS
    Infect Dis Rep; 2021 Feb; 13(1):102-125. PubMed ID: 33557330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis.
    Kang YW; Park S; Lee KJ; Moon D; Kim YM; Lee SW
    Immune Netw; 2021 Feb; 21(1):e1. PubMed ID: 33728094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.