These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32851171)

  • 1. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic-The role of bioturbation and bioerosion.
    Buatois LA; Mángano MG; Minter NJ; Zhou K; Wisshak M; Wilson MA; Olea RA
    Sci Adv; 2020 Aug; 6(33):eabb0618. PubMed ID: 32851171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event.
    Buatois LA; Mángano MG; Olea RA; Wilson MA
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6945-8. PubMed ID: 27247396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rise and early evolution of animals: where do we stand from a trace-fossil perspective?
    Mángano MG; Buatois LA
    Interface Focus; 2020 Aug; 10(4):20190103. PubMed ID: 32642049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras.
    LoDuca ST; Bykova N; Wu M; Xiao S; Zhao Y
    Geobiology; 2017 Jul; 15(4):588-616. PubMed ID: 28603844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ediacaran-Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems.
    Cribb AT; van de Velde SJ; Berelson WM; Bottjer DJ; Corsetti FA
    Geobiology; 2023 Jul; 21(4):435-453. PubMed ID: 36815223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse.
    Rasmussen CM; Ullmann CV; Jakobsen KG; Lindskog A; Hansen J; Hansen T; Eriksson ME; Dronov A; Frei R; Korte C; Nielsen AT; Harper DA
    Sci Rep; 2016 Jan; 6():18884. PubMed ID: 26733399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings.
    Zhang LJ; Qi YA; Buatois LA; Mángano MG; Meng Y; Li D
    Sci Rep; 2017 Apr; 7():45773. PubMed ID: 28374857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in metazoan ecosystem engineering prior to the Ediacaran-Cambrian boundary in the Nama Group, Namibia.
    Cribb AT; Kenchington CG; Koester B; Gibson BM; Boag TH; Racicot RA; Mocke H; Laflamme M; Darroch SAF
    R Soc Open Sci; 2019 Sep; 6(9):190548. PubMed ID: 31598294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China.
    Fang X; Mao Y; Liu Q; Yuan W; Chen Z; Wu R; Li L; Zhang Y; Ma J; Wang W; Zhan R; Peng S; Zhang Y; Huang D
    Proc Biol Sci; 2022 Jul; 289(1978):20221027. PubMed ID: 35858062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palaeoecology of Cambrian-Ordovician acritarchs from China: evidence for a progressive invasion of the marine habitats.
    Shan L; Yan K; Zhang Y; Li J; Servais T
    Philos Trans R Soc Lond B Biol Sci; 2022 Mar; 377(1847):20210035. PubMed ID: 35125001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protracted oxygenation across the Cambrian-Ordovician transition: A key initiator of the Great Ordovician Biodiversification Event?
    Kozik NP; Young SA; Lindskog A; Ahlberg P; Owens JD
    Geobiology; 2023 May; 21(3):323-340. PubMed ID: 36703593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable ocean redox during the main phase of the Great Ordovician Biodiversification Event.
    Del Rey Á; Rasmussen CMØ; Calner M; Wu R; Asael D; Dahl TW
    Commun Earth Environ; 2022; 3(1):220. PubMed ID: 36186548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onshore-offshore patterns in the evolution of phanerozoic shelf communities.
    Jablonski D; Sepkoski JJ; Bottjer DJ; Sheehan PM
    Science; 1983 Dec; 222(4628):1123-5. PubMed ID: 17747386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The redox structure of Ediacaran and early Cambrian oceans and its controls.
    Li C; Shi W; Cheng M; Jin C; Algeo TJ
    Sci Bull (Beijing); 2020 Dec; 65(24):2141-2149. PubMed ID: 36732967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infaunal augurs of the Cambrian explosion: An Ediacaran trace fossil assemblage from Nevada, USA.
    Tarhan LG; Myrow PM; Smith EF; Nelson LL; Sadler PM
    Geobiology; 2020 Jul; 18(4):486-496. PubMed ID: 32243705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Ten Years After'-a long-term settlement and bioerosion experiment in an Arctic rhodolith bed (Mosselbukta, Svalbard).
    Wisshak M; Meyer N; Kuklinski P; Rüggeberg A; Freiwald A
    Geobiology; 2022 Jan; 20(1):112-136. PubMed ID: 34523213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Struggle for phosphorus and the Devonian overturn.
    Kraft P; Mergl M
    Trends Ecol Evol; 2022 Aug; 37(8):645-654. PubMed ID: 35469704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-resolution record of early Paleozoic climate.
    Goldberg SL; Present TM; Finnegan S; Bergmann KD
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early Cambrian origin of the shelf sediment mixed layer.
    Gougeon RC; Mángano MG; Buatois LA; Narbonne GM; Laing BA
    Nat Commun; 2018 May; 9(1):1909. PubMed ID: 29765030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.
    Meyer KM; Ridgwell A; Payne JL
    Geobiology; 2016 May; 14(3):207-19. PubMed ID: 26928862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.