These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 32851174)

  • 1. Connecting a broad spectrum of transient slip on the San Andreas fault.
    Tan YJ; Marsan D
    Sci Adv; 2020 Aug; 6(33):eabb2489. PubMed ID: 32851174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow slip events in the roots of the San Andreas fault.
    Rousset B; Bürgmann R; Campillo M
    Sci Adv; 2019 Feb; 5(2):eaav3274. PubMed ID: 30788438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault.
    Shelly DR
    Nature; 2010 Feb; 463(7281):648-52. PubMed ID: 20130648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Episodic creep events on the San Andreas Fault caused by pore-pressure variations.
    Khoshmanesh M; Shirzaei M
    Nat Geosci; 2018 Aug; 11(8):610-614. PubMed ID: 29937919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar scaling laws for earthquakes and Cascadia slow-slip events.
    Michel S; Gualandi A; Avouac JP
    Nature; 2019 Oct; 574(7779):522-526. PubMed ID: 31645722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault.
    Zielke O; Arrowsmith JR; Grant Ludwig L; Akçiz SO
    Science; 2010 Feb; 327(5969):1119-22. PubMed ID: 20093436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling.
    Frank WB; Brodsky EE
    Sci Adv; 2019 Oct; 5(10):eaaw9386. PubMed ID: 31616786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii.
    Segall P; Desmarais EK; Shelly D; Miklius A; Cervelli P
    Nature; 2006 Jul; 442(7098):71-4. PubMed ID: 16823451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coevolving early afterslip and aftershock signatures of a San Andreas fault rupture.
    Jiang J; Bock Y; Klein E
    Sci Adv; 2021 Apr; 7(15):. PubMed ID: 33837071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant slow fault slip in subduction zones forced by climatic load stress.
    Lowry AR
    Nature; 2006 Aug; 442(7104):802-5. PubMed ID: 16915286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone.
    Nakano M; Hori T; Araki E; Kodaira S; Ide S
    Nat Commun; 2018 Mar; 9(1):984. PubMed ID: 29540688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scaling law for slow earthquakes.
    Ide S; Beroza GC; Shelly DR; Uchide T
    Nature; 2007 May; 447(7140):76-9. PubMed ID: 17476265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A case for historic joint rupture of the San Andreas and San Jacinto faults.
    Lozos JC
    Sci Adv; 2016 Mar; 2(3):e1500621. PubMed ID: 27034977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system.
    Fialko Y
    Nature; 2006 Jun; 441(7096):968-71. PubMed ID: 16791192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes.
    Leeman JR; Saffer DM; Scuderi MM; Marone C
    Nat Commun; 2016 Mar; 7():11104. PubMed ID: 27029996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate-modulated channel incision and rupture history of the San Andreas Fault in the Carrizo Plain.
    Grant Ludwig L; Akçiz SO; Noriega GR; Zielke O; Arrowsmith JR
    Science; 2010 Feb; 327(5969):1117-9. PubMed ID: 20093439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fault interactions and large complex earthquakes in the Los Angeles area.
    Anderson G; Aagaard B; Hudnut K
    Science; 2003 Dec; 302(5652):1946-9. PubMed ID: 14671298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of fault constitutive properties for earthquake prediction.
    Dieterich JH; Kilgore B
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):3787-94. PubMed ID: 11607666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Slow Earthquakes With Deep Learning.
    Rouet-Leduc B; Hulbert C; McBrearty IW; Johnson PA
    Geophys Res Lett; 2020 Feb; 47(4):e2019GL085870. PubMed ID: 32713978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.
    Thomas AM; Nadeau RM; Bürgmann R
    Nature; 2009 Dec; 462(7276):1048-51. PubMed ID: 20033046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.