These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32851177)

  • 1. Molecular insights into the human CLC-7/Ostm1 transporter.
    Zhang S; Liu Y; Zhang B; Zhou J; Li T; Liu Z; Li Y; Yang M
    Sci Adv; 2020 Aug; 6(33):eabb4747. PubMed ID: 32851177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.
    Schrecker M; Korobenko J; Hite RK
    Elife; 2020 Aug; 9():. PubMed ID: 32749217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.
    Sartelet A; Stauber T; Coppieters W; Ludwig CF; Fasquelle C; Druet T; Zhang Z; Ahariz N; Cambisano N; Jentsch TJ; Charlier C
    Dis Model Mech; 2014 Jan; 7(1):119-28. PubMed ID: 24159188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity.
    Leisle L; Ludwig CF; Wagner FA; Jentsch TJ; Stauber T
    EMBO J; 2011 Jun; 30(11):2140-52. PubMed ID: 21527911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of the Lysosomal Cl
    Zifarelli G
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
    Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC
    Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct ClC-6 and ClC-7 Cl
    Coppola MA; Gavazzo P; Zanardi I; Tettey-Matey A; Liantonio A; Fong P; Pusch M
    J Physiol; 2023 Dec; 601(24):5635-5653. PubMed ID: 37937509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl
    Bose S; de Heus C; Kennedy ME; Wang F; Jentsch TJ; Klumperman J; Stauber T
    Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
    Jentsch TJ
    J Physiol; 2007 Feb; 578(Pt 3):633-40. PubMed ID: 17110406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions.
    Weinert S; Jabs S; Hohensee S; Chan WL; Kornak U; Jentsch TJ
    EMBO Rep; 2014 Jul; 15(7):784-91. PubMed ID: 24820037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathobiologic Mechanisms of Neurodegeneration in Osteopetrosis Derived From Structural and Functional Analysis of 14 ClC-7 Mutants.
    Di Zanni E; Palagano E; Lagostena L; Strina D; Rehman A; Abinun M; De Somer L; Martire B; Brown J; Kariminejad A; Balasubramaniam S; Baynam G; Gurrieri F; Pisanti MA; De Maggio I; Abboud MR; Chiesa R; Burren CP; Villa A; Sobacchi C; Picollo A
    J Bone Miner Res; 2021 Mar; 36(3):531-545. PubMed ID: 33125761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ostm1 Bifunctional Roles in Osteoclast Maturation: Insights From a Mouse Model Mimicking a Human OSTM1 Mutation.
    Pata M; Vacher J
    J Bone Miner Res; 2018 May; 33(5):888-898. PubMed ID: 29297601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease.
    Polovitskaya MM; Rana T; Ullrich K; Murko S; Bierhals T; Vogt G; Stauber T; Kubisch C; Santer R; Jentsch TJ
    J Biol Chem; 2024 Jul; 300(7):107437. PubMed ID: 38838776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large transient capacitive currents in wild-type lysosomal Cl-/H+ antiporter ClC-7 and residual transport activity in the proton glutamate mutant E312A.
    Pusch M; Zifarelli G
    J Gen Physiol; 2021 Jan; 153(1):. PubMed ID: 33211806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell biology and physiology of CLC chloride channels and transporters.
    Stauber T; Weinert S; Jentsch TJ
    Compr Physiol; 2012 Jul; 2(3):1701-44. PubMed ID: 23723021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl
    Chavan TS; Cheng RC; Jiang T; Mathews II; Stein RA; Koehl A; Mchaourab HS; Tajkhorshid E; Maduke M
    Elife; 2020 Apr; 9():. PubMed ID: 32310757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cl- transporter ClC-7 is essential for phagocytic clearance by microglia.
    Iyer H; Talbot WS
    J Cell Sci; 2024 Feb; 137(4):. PubMed ID: 38294065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.