These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32851216)

  • 1. The effectiveness of sound-processing strategies on tonal language cochlear implant users: A systematic review.
    Liu H; Peng X; Zhao Y; Ni X
    Pediatr Investig; 2017 Dec; 1(1):32-39. PubMed ID: 32851216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lexical tone perception with HiResolution and HiResolution 120 sound-processing strategies in pediatric Mandarin-speaking cochlear implant users.
    Han D; Liu B; Zhou N; Chen X; Kong Y; Liu H; Zheng Y; Xu L
    Ear Hear; 2009 Apr; 30(2):169-77. PubMed ID: 19194297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability.
    Koch DB; Osberger MJ; Segel P; Kessler D
    Audiol Neurootol; 2004; 9(4):214-23. PubMed ID: 15205549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous improvement in Mandarin lexical tone perception as the number of channels increased: a simulation study of cochlear implant.
    Lin YS; Lee FP; Huang IS; Peng SC
    Acta Otolaryngol; 2007 May; 127(5):505-14. PubMed ID: 17453477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tone discrimination and speech perception benefit in Mandarin-speaking children fit with HiRes fidelity 120 sound processing.
    Chang YT; Yang HM; Lin YH; Liu SH; Wu JL
    Otol Neurotol; 2009 Sep; 30(6):750-7. PubMed ID: 19704359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients.
    Dincer D'Alessandro H; Ballantyne D; Boyle PJ; De Seta E; DeVincentiis M; Mancini P
    Ear Hear; 2018; 39(4):679-686. PubMed ID: 29194080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cantonese Tone Perception for Children Who Use a Hearing Aid and a Cochlear Implant in Opposite Ears.
    Mok M; Holt CM; Lee KYS; Dowell RC; Vogel AP
    Ear Hear; 2017; 38(6):e359-e368. PubMed ID: 28678079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel speech-processing strategy incorporating tonal information for cochlear implants.
    Lan N; Nie KB; Gao SK; Zeng FG
    IEEE Trans Biomed Eng; 2004 May; 51(5):752-60. PubMed ID: 15132501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of speech processing strategy on Chinese tone recognition by nucleus-24 cochlear implant users.
    Fu QJ; Hsu CJ; Horng MJ
    Ear Hear; 2004 Oct; 25(5):501-8. PubMed ID: 15599196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New cochlear implant coding strategy for tonal language speakers.
    Wong LL; Vandali AE; Ciocca V; Luk B; Ip VW; Murray B; Yu HC; Chung I
    Int J Audiol; 2008 Jun; 47(6):337-47. PubMed ID: 18569106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lexical tone and word recognition in noise of Mandarin-speaking children who use cochlear implants and hearing aids in opposite ears.
    Yuen KC; Cao KL; Wei CG; Luan L; Li H; Zhang ZY
    Cochlear Implants Int; 2009; 10 Suppl 1():120-9. PubMed ID: 19195003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Chinese tone recognition by manipulating amplitude envelope: implications for cochlear implants.
    Luo X; Fu QJ
    J Acoust Soc Am; 2004 Dec; 116(6):3659-67. PubMed ID: 15658716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable Devices for Single-Sided Deafness and Conductive or Mixed Hearing Loss: A Health Technology Assessment.
    Ontario Health (Quality)
    Ont Health Technol Assess Ser; 2020; 20(1):1-165. PubMed ID: 32194878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users.
    Luo X; Fu QJ; Wei CG; Cao KL
    Ear Hear; 2008 Dec; 29(6):957-70. PubMed ID: 18818548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zerocrossing-based fine structure representation to convey Mandarin tonal information: a study on the noise effect.
    Chen F; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():343-6. PubMed ID: 19162663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech recognition outcomes in Mandarin-speaking cochlear implant users with fine structure processing.
    Qi B; Liu Z; Gu X; Liu B
    Acta Otolaryngol; 2017 Mar; 137(3):286-292. PubMed ID: 27701966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.
    Cullington HE; Zeng FG
    Ear Hear; 2011 Feb; 32(1):16-30. PubMed ID: 21178567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mandarin Lexical Tone Acquisition in Cochlear Implant Users With Prelingual Deafness: A Review.
    Tan J; Dowell R; Vogel A
    Am J Audiol; 2016 Sep; 25(3):246-56. PubMed ID: 27387047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musical Sound Quality in Cochlear Implant Users: A Comparison in Bass Frequency Perception Between Fine Structure Processing and High-Definition Continuous Interleaved Sampling Strategies.
    Roy AT; Carver C; Jiradejvong P; Limb CJ
    Ear Hear; 2015; 36(5):582-90. PubMed ID: 25906173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melodic pitch perception and lexical tone perception in Mandarin-speaking cochlear implant users.
    Tao D; Deng R; Jiang Y; Galvin JJ; Fu QJ; Chen B
    Ear Hear; 2015 Jan; 36(1):102-10. PubMed ID: 25099401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.