BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3285132)

  • 1. The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia.
    Segawa M; Hirata Y; Fujimori S; Okada K
    Metabolism; 1988 May; 37(5):454-60. PubMed ID: 3285132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of polyol pathway activity in diabetic and galactosemic rats by the aldose reductase inhibitor CP-45,634.
    Peterson MJ; Sarges R; Aldinger CE; MacDonald DP
    Adv Exp Med Biol; 1979; 119():347-56. PubMed ID: 115231
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of a new aldose reductase inhibitor, 8'-chloro-2',3'-dihydrospiro [pyrrolidine-3,6'(5'H)-pyrrolo[1,2,3-de] [1,4]benzoxazine]-2,5,5'- trione (ADN-138), on delayed motor nerve conduction velocity in streptozotocin-diabetic rats.
    Hirata Y; Fujimori S; Okada K
    Metabolism; 1988 Feb; 37(2):159-63. PubMed ID: 2828821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for existence of polyol pathway in cultured rat mesangial cells.
    Kikkawa R; Umemura K; Haneda M; Arimura T; Ebata K; Shigeta Y
    Diabetes; 1987 Feb; 36(2):240-3. PubMed ID: 3100369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of SG-210, a novel aldose reductase inhibitor, on impaired polyol pathway in rats received diabetic manipulations.
    Horie S; Nagai H; Yuuki T; Narita Y; Tsuda Y; Nakajima T; Nakamura N
    J Diabetes Complications; 1998; 12(3):163-9. PubMed ID: 9618072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyol pathway activity and myo-inositol metabolism. A suggested relationship in the pathogenesis of diabetic neuropathy.
    Finegold D; Lattimer SA; Nolle S; Bernstein M; Greene DA
    Diabetes; 1983 Nov; 32(11):988-92. PubMed ID: 6416910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyol pathway activity in nervous tissues of diabetic and galactose-fed rats: effect of dietary galactose withdrawal or tolrestat intervention therapy.
    Sredy J; Sawicki DR; Notvest RR
    J Diabet Complications; 1991; 5(1):42-7. PubMed ID: 1830318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactosemia produces ARI-preventable nodal changes similar to those of diabetic neuropathy.
    Kamijo M; Basso M; Cherian PV; Hohman TC; Sima AA
    Diabetes Res Clin Pract; 1994 Sep; 25(2):117-29. PubMed ID: 7821191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal polyol and myo-inositol in galactosemic dogs given an aldose-reductase inhibitor.
    Kern TS; Engerman RL
    Invest Ophthalmol Vis Sci; 1991 Dec; 32(13):3175-7. PubMed ID: 1748548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of polyol-pathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes mellitus in rats.
    Goldfarb S; Ziyadeh FN; Kern EF; Simmons DA
    Diabetes; 1991 Apr; 40(4):465-71. PubMed ID: 2010046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CP-45,634: a novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats.
    Peterson MJ; Sarges R; Aldinger CE; MacDonald DP
    Metabolism; 1979 Apr; 28(4 Suppl 1):456-61. PubMed ID: 122297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of sorbitol, galactitol, and myo-inositol in lens and sciatic nerve by high-performance liquid chromatography.
    Miwa I; Kanbara M; Wakazono H; Okuda J
    Anal Biochem; 1988 Aug; 173(1):39-44. PubMed ID: 3189800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of polyols in the pathophysiology of hypergalactosemia.
    Berry GT
    Eur J Pediatr; 1995; 154(7 Suppl 2):S53-64. PubMed ID: 7671966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does galactose feeding provide a valid model of consequences of exaggerated polyol-pathway flux in peripheral nerve in experimental diabetes?
    Willars GB; Lambourne JE; Tomlinson DR
    Diabetes; 1987 Dec; 36(12):1425-31. PubMed ID: 3678622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of aldose reductase inhibition on nerve sorbitol and myoinositol concentrations in diabetic and galactosemic rats.
    Yue DK; Hanwell MA; Satchell PM; Handelsman DJ; Turtle JR
    Metabolism; 1984 Dec; 33(12):1119-22. PubMed ID: 6438438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroretinogram in sucrose-fed diabetic rats treated with an aldose reductase inhibitor or an anticoagulant.
    Hotta N; Nakamura J; Sakakibara F; Hamada Y; Hara T; Mori K; Nakashima E; Sasaki H; Kasama N; Inukai S; Koh N
    Am J Physiol; 1997 Nov; 273(5):E965-71. PubMed ID: 9374683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of Na+, K(+)-ATPase to delayed motor nerve conduction velocity: effect of aldose reductase inhibitor, ADN-138, on Na+, K(+)-ATPase activity.
    Hirata Y; Okada K
    Metabolism; 1990 Jun; 39(6):563-7. PubMed ID: 2161992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione depletion in the lens of galactosemic and diabetic rats.
    Lou MF; Dickerson JE; Garadi R; York BM
    Exp Eye Res; 1988 Apr; 46(4):517-30. PubMed ID: 3133235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldose reductase inhibition fails to prevent retinopathy in diabetic and galactosemic dogs.
    Engerman RL; Kern TS
    Diabetes; 1993 Jun; 42(6):820-5. PubMed ID: 8495805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of an aldose reductase inhibitor, SNK-860, on deficits in the electroretinogram of diabetic rats.
    Hotta N; Koh N; Sakakibara F; Nakamura J; Hamada Y; Naruse K; Sasaki H; Mizuno K; Matsubara A; Kakuta H
    Exp Physiol; 1995 Nov; 80(6):981-9. PubMed ID: 8962712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.