These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32851450)

  • 1. The relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to predict survival of patients with metastatic colorectal cancer.
    Mühlberg A; Holch JW; Heinemann V; Huber T; Moltz J; Maurus S; Jäger N; Liu L; Froelich MF; Katzmann A; Gresser E; Taubmann O; Sühling M; Nörenberg D
    Eur Radiol; 2021 Feb; 31(2):834-846. PubMed ID: 32851450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Imaging Biomarkers of the Whole Liver Tumor Burden Improve Survival Prediction in Metastatic Pancreatic Cancer.
    Gebauer L; Moltz JH; Mühlberg A; Holch JW; Huber T; Enke J; Jäger N; Haas M; Kruger S; Boeck S; Sühling M; Katzmann A; Hahn H; Kunz WG; Heinemann V; Nörenberg D; Maurus S
    Cancers (Basel); 2021 Nov; 13(22):. PubMed ID: 34830885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases.
    Taghavi M; Staal F; Gomez Munoz F; Imani F; Meek DB; Simões R; Klompenhouwer LG; van der Heide UA; Beets-Tan RGH; Maas M
    Cardiovasc Intervent Radiol; 2021 Jun; 44(6):913-920. PubMed ID: 33506278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.
    Wang Q; Nilsson H; Xu K; Wei X; Chen D; Zhao D; Hu X; Wang A; Bai G
    Eur J Radiol; 2024 Jun; 175():111459. PubMed ID: 38636408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases.
    Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M
    Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
    Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F
    Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC.
    Stüber AT; Coors S; Schachtner B; Weber T; Rügamer D; Bender A; Mittermeier A; Öcal O; Seidensticker M; Ricke J; Bischl B; Ingrisch M
    Invest Radiol; 2023 Dec; 58(12):874-881. PubMed ID: 37504498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy.
    Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D
    Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases.
    Taghavi M; Staal FC; Simões R; Hong EK; Lambregts DM; van der Heide UA; Beets-Tan RG; Maas M
    Acta Radiol; 2023 Jan; 64(1):5-12. PubMed ID: 34918955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Primary Colorectal Cancer CT Radiomics to Predict Metachronous Liver Metastasis.
    Li Y; Gong J; Shen X; Li M; Zhang H; Feng F; Tong T
    Front Oncol; 2022; 12():861892. PubMed ID: 35296011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of recurrence after surgery in colorectal cancer patients using radiomics from diagnostic contrast-enhanced computed tomography: a two-center study.
    Badic B; Da-Ano R; Poirot K; Jaouen V; Magnin B; Gagnière J; Pezet D; Hatt M; Visvikis D
    Eur Radiol; 2022 Jan; 32(1):405-414. PubMed ID: 34170367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics.
    Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K
    Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study.
    Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z
    Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics.
    Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J
    Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases.
    Wei J; Cheng J; Gu D; Chai F; Hong N; Wang Y; Tian J
    Med Phys; 2021 Jan; 48(1):513-522. PubMed ID: 33119899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
    Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J
    Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can radiomics improve the prediction of metastatic relapse of myxoid/round cell liposarcomas?
    Crombé A; Le Loarer F; Sitbon M; Italiano A; Stoeckle E; Buy X; Kind M
    Eur Radiol; 2020 May; 30(5):2413-2424. PubMed ID: 31953663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment.
    Granata V; Fusco R; De Muzio F; Brunese MC; Setola SV; Ottaiano A; Cardone C; Avallone A; Patrone R; Pradella S; Miele V; Tatangelo F; Cutolo C; Maggialetti N; Caruso D; Izzo F; Petrillo A
    Radiol Med; 2023 Nov; 128(11):1310-1332. PubMed ID: 37697033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning.
    Tharmaseelan H; Vellala AK; Hertel A; Tollens F; Rotkopf LT; Rink J; Woźnicki P; Ayx I; Bartling S; Nörenberg D; Schoenberg SO; Froelich MF
    Cancer Imaging; 2023 Oct; 23(1):95. PubMed ID: 37798797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics analysis of pre-treatment [
    van Helden EJ; Vacher YJL; van Wieringen WN; van Velden FHP; Verheul HMW; Hoekstra OS; Boellaard R; Menke-van der Houven van Oordt CW
    Eur J Nucl Med Mol Imaging; 2018 Dec; 45(13):2307-2317. PubMed ID: 30094460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.