These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 3285158)
41. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Pinto SB; Kafatos FC; Michel K Cell Microbiol; 2008 Apr; 10(4):891-8. PubMed ID: 18005239 [TBL] [Abstract][Full Text] [Related]
42. Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei. Raibaud A; Brahimi K; Roth CW; Brey PT; Faust DM Mol Biochem Parasitol; 2006 Nov; 150(1):107-13. PubMed ID: 16908078 [TBL] [Abstract][Full Text] [Related]
43. Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. Baton LA; Ranford-Cartwright LC J Invertebr Pathol; 2007 Nov; 96(3):244-54. PubMed ID: 17575986 [TBL] [Abstract][Full Text] [Related]
44. Mutational analysis of the GPI-anchor addition sequence from the circumsporozoite protein of Plasmodium. Wang Q; Fujioka H; Nussenzweig V Cell Microbiol; 2005 Nov; 7(11):1616-26. PubMed ID: 16207248 [TBL] [Abstract][Full Text] [Related]
45. Parasitology. New ways to control malaria. Hemingway J; Craig A Science; 2004 Mar; 303(5666):1984-5. PubMed ID: 15044794 [No Abstract] [Full Text] [Related]
46. Re-ingestion of Plasmodium berghei sporozoites after delivery into the host by mosquitoes. Kebaier C; Vanderberg JP Am J Trop Med Hyg; 2006 Dec; 75(6):1200-4. PubMed ID: 17172393 [TBL] [Abstract][Full Text] [Related]
47. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Ito J; Ghosh A; Moreira LA; Wimmer EA; Jacobs-Lorena M Nature; 2002 May; 417(6887):452-5. PubMed ID: 12024215 [TBL] [Abstract][Full Text] [Related]
48. Organization of the exoerythrocytic stage of the rodent malaria parasite Plasmodium berghei. A cytochemical study. Meis JF; Verhave JP; Jap PH; Hollingdale MR; Meuwissen JH J Submicrosc Cytol; 1986 Oct; 18(4):755-60. PubMed ID: 3537327 [TBL] [Abstract][Full Text] [Related]
49. Getting infectious: formation and maturation of Plasmodium sporozoites in the Anopheles vector. Matuschewski K Cell Microbiol; 2006 Oct; 8(10):1547-56. PubMed ID: 16984410 [TBL] [Abstract][Full Text] [Related]
50. Targeted disruption of the plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. Yuda M; Sakaida H; Chinzei Y J Exp Med; 1999 Dec; 190(11):1711-6. PubMed ID: 10587361 [TBL] [Abstract][Full Text] [Related]
51. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. Han YS; Thompson J; Kafatos FC; Barillas-Mury C EMBO J; 2000 Nov; 19(22):6030-40. PubMed ID: 11080150 [TBL] [Abstract][Full Text] [Related]
52. How do malaria ookinetes cross the mosquito midgut wall? Baton LA; Ranford-Cartwright LC Trends Parasitol; 2005 Jan; 21(1):22-8. PubMed ID: 15639737 [TBL] [Abstract][Full Text] [Related]
53. Development of Plasmodium berghei ookinetes in the midgut of Anopheles atroparvus mosquitoes and in vitro. Janse CJ; Rouwenhorst RJ; Van der Klooster PF; Van der Kaay HJ; Overdulve JP Parasitology; 1985 Oct; 91 ( Pt 2)():219-25. PubMed ID: 3906518 [TBL] [Abstract][Full Text] [Related]
54. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Siden-Kiamos I; Ecker A; Nybäck S; Louis C; Sinden RE; Billker O Mol Microbiol; 2006 Jun; 60(6):1355-63. PubMed ID: 16796674 [TBL] [Abstract][Full Text] [Related]
55. Ultrastructural studies on morphogenesis of rhoptries in sporozoites of Plasmodium berghei (NK 65) in Anopheles stephensi. Rastogi M; Maitra SC; Sen AB Indian J Malariol; 1988 Dec; 25(2):83-7. PubMed ID: 3077372 [No Abstract] [Full Text] [Related]
56. [The infectivity of Plasmodium berghei sporozoites during laboratory manipulation]. Ngimbi NP; Wery M; Timperman G; Hendrix L; Peeters-de Ruysser F Ann Soc Belg Med Trop; 1979 Sep; 59(3):237-50. PubMed ID: 391163 [No Abstract] [Full Text] [Related]
57. [The action of phytobacteriomycin on the ultrastructure of the epithelial cells in the midgut of the mosquito Aedes aegypti L]. Chunina LM; Chernov IuV Med Parazitol (Mosk); 1992; (4):26-30. PubMed ID: 1331734 [No Abstract] [Full Text] [Related]
58. Microfilarial perforation of the midgut of a mosquito. Perrone JB; Spielman A J Parasitol; 1986 Oct; 72(5):723-7. PubMed ID: 3806321 [TBL] [Abstract][Full Text] [Related]
59. Plasmodium berghei berghei: ectopic development of the ANKA strain in Anopheles stephensi. Beaudoin RL; Strome CP; Tubergen TA Exp Parasitol; 1974 Oct; 36(2):189-201. PubMed ID: 4606913 [No Abstract] [Full Text] [Related]
60. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: fiction or fact? Valigurová A; Michalková V; Koudela B Int J Parasitol; 2009 Sep; 39(11):1235-42. PubMed ID: 19460380 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]