These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 32851763)

  • 1. Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis.
    Song Y; Xu B; Liao T; Guo J; Wu Y; Sun Z
    Small; 2021 Mar; 17(9):e2002240. PubMed ID: 32851763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of 2D Graphene Materials for Electrocatalysis.
    Zhang X; Gao J; Xiao Y; Wang J; Sun G; Zhao Y; Qu L
    Chem Asian J; 2020 Aug; 15(15):2271-2281. PubMed ID: 32227581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis.
    Zhang Z; Liu P; Song Y; Hou Y; Xu B; Liao T; Zhang H; Guo J; Sun Z
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204297. PubMed ID: 36266983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis.
    Liu YL; Liu XY; Feng L; Shao LX; Li SJ; Tang J; Cheng H; Chen Z; Huang R; Xu HC; Zhuang JL
    ChemSusChem; 2022 May; 15(10):e202102603. PubMed ID: 35092355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis.
    Wu H; Wang J; Jin W; Wu Z
    Nanoscale; 2020 Sep; 12(36):18497-18522. PubMed ID: 32839807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting.
    Wang CP; Lin YX; Cui L; Zhu J; Bu XH
    Small; 2023 Apr; 19(15):e2207342. PubMed ID: 36605002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress on Defect-rich Transition Metal Oxides and Their Energy-Related Applications.
    Wang Y; Liang Z; Zheng H; Cao R
    Chem Asian J; 2020 Nov; 15(22):3717-3736. PubMed ID: 32970393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions.
    Zhang N; Jiang R
    Chempluschem; 2021 Dec; 86(12):1586-1601. PubMed ID: 34874104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications.
    Xue Y; Zhao G; Yang R; Chu F; Chen J; Wang L; Huang X
    Nanoscale; 2021 Feb; 13(7):3911-3936. PubMed ID: 33595021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances of Doping Strategy for Boosting the Electrocatalytic Performance of Two-dimensional Noble Metal Nanosheets.
    Wei Z; Shen Y; Wang X; Song Y; Guo J
    Nanotechnology; 2024 Jul; ():. PubMed ID: 38986444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Perfect Imperfections in Electrocatalysts.
    Majee R; Parvin S; Arif Islam Q; Kumar A; Debnath B; Mondal S; Bhattacharjee S; Das S; Kumar A; Bhattacharyya S
    Chem Rec; 2022 Sep; 22(9):e202200070. PubMed ID: 35675947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction.
    Voiry D; Yang J; Chhowalla M
    Adv Mater; 2016 Aug; 28(29):6197-206. PubMed ID: 26867809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.
    Wang HF; Chen L; Pang H; Kaskel S; Xu Q
    Chem Soc Rev; 2020 Mar; 49(5):1414-1448. PubMed ID: 32039429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery.
    Zhao J; He Y; Chen Z; Zheng X; Han X; Rao D; Zhong C; Hu W; Deng Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4915-4921. PubMed ID: 30537808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions.
    Liu Y; Huang H; Xue L; Sun J; Wang X; Xiong P; Zhu J
    Nanoscale; 2021 Dec; 13(47):19840-19856. PubMed ID: 34849520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Hybridization of Noble Metal Nanostructures on 2D Metal-Organic Framework Nanosheets To Catalyze Hydrogen Evolution.
    Rui K; Zhao G; Lao M; Cui P; Zheng X; Zheng X; Zhu J; Huang W; Dou SX; Sun W
    Nano Lett; 2019 Dec; 19(12):8447-8453. PubMed ID: 31693378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation-Tuning Engineering on Metal Oxides for Oxygen Electrocatalysis.
    Cao L; Zhang BW; Zhao S
    Chemistry; 2023 Jan; 29(3):e202202000. PubMed ID: 36274220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.