These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 32851830)
1. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. Kirk ML; Kc K Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851830 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of molybdenum. Mendel RR Met Ions Life Sci; 2013; 12():503-28. PubMed ID: 23595682 [TBL] [Abstract][Full Text] [Related]
4. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. Rothery RA; Weiner JH J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations. Li J; Ryde U Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012 [TBL] [Abstract][Full Text] [Related]
6. Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: comparative reactivity of tungsten and molybdenum. Sung KM; Holm RH J Am Chem Soc; 2001 Mar; 123(9):1931-43. PubMed ID: 11456814 [TBL] [Abstract][Full Text] [Related]
7. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase. Ha Y; Tenderholt AL; Holm RH; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2014 Jun; 136(25):9094-105. PubMed ID: 24884723 [TBL] [Abstract][Full Text] [Related]
8. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes. Rothery RA; Stein B; Solomonson M; Kirk ML; Weiner JH Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14773-8. PubMed ID: 22927383 [TBL] [Abstract][Full Text] [Related]
9. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. Moura JJ; Brondino CD; Trincão J; Romão MJ J Biol Inorg Chem; 2004 Oct; 9(7):791-9. PubMed ID: 15311335 [TBL] [Abstract][Full Text] [Related]
10. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Romão MJ Dalton Trans; 2009 Jun; (21):4053-68. PubMed ID: 19452052 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes. Thapper A; Lorber C; Fryxelius J; Behrens A; Nordlander E J Inorg Biochem; 2000 Apr; 79(1-4):67-74. PubMed ID: 10830849 [TBL] [Abstract][Full Text] [Related]
14. Molybdenum in human health and disease. Schwarz G; Belaidi AA Met Ions Life Sci; 2013; 13():415-50. PubMed ID: 24470099 [TBL] [Abstract][Full Text] [Related]
15. From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Tejada-Jimenez M; Chamizo-Ampudia A; Calatrava V; Galvan A; Fernandez E; Llamas A Molecules; 2018 Dec; 23(12):. PubMed ID: 30545001 [TBL] [Abstract][Full Text] [Related]
17. Molybdenum's Role as an Essential Element in Enzymes Catabolizing Redox Reactions: A Review. Adamus JP; Ruszczyńska A; Wyczałkowska-Tomasik A Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062583 [TBL] [Abstract][Full Text] [Related]
18. Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics. Lim BS; Holm RH J Am Chem Soc; 2001 Mar; 123(9):1920-30. PubMed ID: 11456813 [TBL] [Abstract][Full Text] [Related]
19. Monodithiolene molybdenum(V, VI) complexes: a structural analogue of the oxidized active site of the sulfite oxidase enzyme family. Lim BS; Willer MW; Miao M; Holm RH J Am Chem Soc; 2001 Aug; 123(34):8343-9. PubMed ID: 11516283 [TBL] [Abstract][Full Text] [Related]
20. Metal-Containing Formate Dehydrogenases, a Personal View. Leimkühler S Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]