These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 32851830)

  • 21. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis and Insertion of the Molybdenum Cofactor.
    Magalon A; Mendel RR
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26435257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replacement of Molybdenum by Tungsten in a Biomimetic Complex Leads to an Increase in Oxygen Atom Transfer Catalytic Activity.
    Ćorović MZ; Wiedemaier F; Belaj F; Mösch-Zanetti NC
    Inorg Chem; 2022 Aug; 61(31):12415-12424. PubMed ID: 35894844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Faster oxygen atom transfer catalysis with a tungsten dioxo complex than with its molybdenum analog.
    Arumuganathan T; Mayilmurugan R; Volpe M; Mösch-Zanetti NC
    Dalton Trans; 2011 Aug; 40(31):7850-7. PubMed ID: 21725553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell biology of molybdenum in plants.
    Mendel RR
    Plant Cell Rep; 2011 Oct; 30(10):1787-97. PubMed ID: 21660547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell biology of molybdenum.
    Mendel RR; Bittner F
    Biochim Biophys Acta; 2006 Jul; 1763(7):621-35. PubMed ID: 16784786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors.
    Enemark JH
    J Inorg Biochem; 2023 Oct; 247():112312. PubMed ID: 37441922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective.
    Maia LB
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometrical control of the active site electronic structure of pyranopterin enzymes by metal-dithiolate folding: aldehyde oxidase.
    Joshi HK; Enemark JH
    J Am Chem Soc; 2004 Sep; 126(38):11784-5. PubMed ID: 15382900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell biology of molybdenum in plants and humans.
    Mendel RR; Kruse T
    Biochim Biophys Acta; 2012 Sep; 1823(9):1568-79. PubMed ID: 22370186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes.
    Boll M; Fuchs G; Meier C; Trautwein A; El Kasmi A; Ragsdale SW; Buchanan G; Lowe DJ
    J Biol Chem; 2001 Dec; 276(51):47853-62. PubMed ID: 11602591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxido-Alcoholato and Oxido-Thiolato Molybdenum(VI) Core Structures.
    Sugimoto H; Sato M; Asano K; Suzuki T; Mieda K; Ogura T; Matsumoto T; Giles LJ; Pokhrel A; Kirk ML; Itoh S
    Inorg Chem; 2016 Feb; 55(4):1542-50. PubMed ID: 26816115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes.
    Andreesen JR; Makdessi K
    Ann N Y Acad Sci; 2008 Mar; 1125():215-29. PubMed ID: 18096847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chemical approach to systematically designate the pyranopterin centers of molybdenum and tungsten enzymes and synthetic models.
    Fischer B; Enemark JH; Basu P
    J Inorg Biochem; 1998 Oct; 72(1-2):13-21. PubMed ID: 9861725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli.
    Havelius KG; Reschke S; Horn S; Döring A; Niks D; Hille R; Schulzke C; Leimkühler S; Haumann M
    Inorg Chem; 2011 Feb; 50(3):741-8. PubMed ID: 21190337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.
    Iobbi-Nivol C; Leimkühler S
    Biochim Biophys Acta; 2013; 1827(8-9):1086-101. PubMed ID: 23201473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity.
    Yang J; Enemark JH; Kirk ML
    Inorganics (Basel); 2020 Mar; 8(3):. PubMed ID: 34327225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molybdoenzymes and molybdenum cofactor in plants.
    Mendel RR; Hänsch R
    J Exp Bot; 2002 Aug; 53(375):1689-98. PubMed ID: 12147719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.