These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 32851955)
1. Flavonoids as Potential Therapeutic Agents for the Management of Diabetic Neuropathy. Sood A; Kumar B; Singh SK; Prashar P; Gautam A; Gulati M; Pandey NK; Melkani I; Awasthi A; Saraf SA; Vidari G; Ozdemir M; Hussain FHS; Anwar ET; Ameen MSM; Gupta S; Porwal O Curr Pharm Des; 2020; 26(42):5468-5487. PubMed ID: 32851955 [TBL] [Abstract][Full Text] [Related]
2. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Sivakumar PM; Prabhakar PK; Cetinel S; R N; Prabhawathi V Mini Rev Med Chem; 2022; 22(14):1828-1846. PubMed ID: 35264089 [TBL] [Abstract][Full Text] [Related]
3. Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids. Ola MS; Al-Dosari D; Alhomida AS Curr Pharm Des; 2018; 24(19):2180-2187. PubMed ID: 29766782 [TBL] [Abstract][Full Text] [Related]
4. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Hussain T; Tan B; Murtaza G; Liu G; Rahu N; Saleem Kalhoro M; Hussain Kalhoro D; Adebowale TO; Usman Mazhar M; Rehman ZU; Martínez Y; Akber Khan S; Yin Y Pharmacol Res; 2020 Feb; 152():104629. PubMed ID: 31918019 [TBL] [Abstract][Full Text] [Related]
5. The antioxidant response as a drug target in diabetic neuropathy. Vincent AM; Edwards JL; Sadidi M; Feldman EL Curr Drug Targets; 2008 Jan; 9(1):94-100. PubMed ID: 18220717 [TBL] [Abstract][Full Text] [Related]
6. Tannins and vascular complications of Diabetes: An update. Laddha AP; Kulkarni YA Phytomedicine; 2019 Mar; 56():229-245. PubMed ID: 30668344 [TBL] [Abstract][Full Text] [Related]
7. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Kuhad A; Chopra K Neuropharmacology; 2009 Sep; 57(4):456-62. PubMed ID: 19555701 [TBL] [Abstract][Full Text] [Related]
8. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889 [TBL] [Abstract][Full Text] [Related]
9. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Al-Ishaq RK; Abotaleb M; Kubatka P; Kajo K; Büsselberg D Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480505 [TBL] [Abstract][Full Text] [Related]
10. In Vitro and In Vivo Effects of Flavonoids on Peripheral Neuropathic Pain. Basu P; Basu A Molecules; 2020 Mar; 25(5):. PubMed ID: 32150953 [TBL] [Abstract][Full Text] [Related]
11. Alternative therapeutic principles in the prevention of microvascular and neuropathic complications. Gries FA Diabetes Res Clin Pract; 1995 Aug; 28 Suppl():S201-7. PubMed ID: 8529515 [TBL] [Abstract][Full Text] [Related]
12. Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Miranda Pedroso TF; Bonamigo TR; da Silva J; Vasconcelos P; Félix JM; Cardoso CAL; Souza RIC; Dos Santos AC; Volobuff CRF; Formagio ASN; Trichez VDK Biomed Pharmacother; 2019 Mar; 111():1383-1392. PubMed ID: 30841453 [TBL] [Abstract][Full Text] [Related]
13. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Spínola V; Llorent-Martínez EJ; Castilho PC Food Res Int; 2019 Feb; 116():1229-1238. PubMed ID: 30716910 [TBL] [Abstract][Full Text] [Related]
14. Optimization of extraction flavonoids from Exocarpium Citri Grandis and evaluation its hypoglycemic and hypolipidemic activities. Kong F; Ding Z; Zhang K; Duan W; Qin Y; Su Z; Bi Y J Ethnopharmacol; 2020 Nov; 262():113178. PubMed ID: 32736047 [TBL] [Abstract][Full Text] [Related]
15. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Kandhare AD; Raygude KS; Ghosh P; Ghule AE; Bodhankar SL Fitoterapia; 2012 Jun; 83(4):650-9. PubMed ID: 22343014 [TBL] [Abstract][Full Text] [Related]
16. A Detailed Review of Molecular Pathways and Mechanisms Responsible for the Development and Aggravation of Neuropathy and Nephropathy in Diabetes. Chandra P; Sachan N; Saraswat N; Vyawahare N Curr Mol Pharmacol; 2024; 17(1):e280323215026. PubMed ID: 37018534 [TBL] [Abstract][Full Text] [Related]
17. The Possible Role of Flavonoids in the Prevention of Diabetic Complications. Testa R; Bonfigli AR; Genovese S; De Nigris V; Ceriello A Nutrients; 2016 May; 8(5):. PubMed ID: 27213445 [TBL] [Abstract][Full Text] [Related]
18. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Ahmad I; Hoda M Life Sci; 2020 Mar; 245():117350. PubMed ID: 31982401 [TBL] [Abstract][Full Text] [Related]
19. [Antioxidant and anti-AGE therapeutics: evaluation and perspectives]. Bonnefont-Rousselot D J Soc Biol; 2001; 195(4):391-8. PubMed ID: 11938556 [TBL] [Abstract][Full Text] [Related]
20. Current options and perspectives in the treatment of diabetic neuropathy. Várkonyi T; Putz Z; Keresztes K; Martos T; Lengyel C; Stirban A; Jermendy G; Kempler P Curr Pharm Des; 2013; 19(27):4981-5007. PubMed ID: 23278494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]