These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32852028)

  • 1. Spectral shift, electronic coupling and exciton delocalization in nanocrystal dimers: insights from all-atom electronic structure computations.
    Coden M; De Checchi P; Fresch B
    Nanoscale; 2020 Sep; 12(35):18124-18136. PubMed ID: 32852028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Trapping versus Exciton Delocalization in CdSe Quantum Dots.
    Grenland JJ; Maddux CJA; Kelley DF; Kelley AM
    J Phys Chem Lett; 2017 Oct; 8(20):5113-5118. PubMed ID: 28972776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast fs coherent excitonic dynamics in CdSe quantum dots assemblies addressed and probed by 2D electronic spectroscopy.
    Collini E; Gattuso H; Levine RD; Remacle F
    J Chem Phys; 2021 Jan; 154(1):014301. PubMed ID: 33412883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface-passivating ligands and ultrasmall CdSe nanocrystal size on the delocalization of exciton confinement.
    Teunis MB; Dolai S; Sardar R
    Langmuir; 2014 Jul; 30(26):7851-8. PubMed ID: 24926916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots.
    Salvador MR; Graham MW; Scholes GD
    J Chem Phys; 2006 Nov; 125(18):184709. PubMed ID: 17115781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.
    Azzaro MS; Dodin A; Zhang DY; Willard AP; Roberts ST
    Nano Lett; 2018 May; 18(5):3259-3270. PubMed ID: 29652509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds.
    Mass OA; Wilson CK; Roy SK; Barclay MS; Patten LK; Terpetschnig EA; Lee J; Pensack RD; Yurke B; Knowlton WB
    J Phys Chem B; 2020 Oct; 124(43):9636-9647. PubMed ID: 33052691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Tuning of the Bandgap of CdSe Quantum Dots through Redox-Active Exciton-Delocalizing N-Heterocyclic Carbene Ligands.
    Westmoreland DE; López-Arteaga R; Kantt LP; Wasielewski MR; Weiss EA
    J Am Chem Soc; 2022 Mar; 144(10):4300-4304. PubMed ID: 35254065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes.
    Womick JM; Moran AM
    J Phys Chem B; 2011 Feb; 115(6):1347-56. PubMed ID: 21268650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving Exciton Delocalization in Quantum Dot Aggregates Using Organic Linker Molecules.
    Cohen E; Gdor I; Romero E; Yochelis S; van Grondelle R; Paltiel Y
    J Phys Chem Lett; 2017 Mar; 8(5):1014-1018. PubMed ID: 28195481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates.
    Quenzel T; Timmer D; Gittinger M; Zablocki J; Zheng F; Schiek M; Lützen A; Frauenheim T; Tretiak S; Silies M; Zhong JH; De Sio A; Lienau C
    ACS Nano; 2022 Mar; 16(3):4693-4704. PubMed ID: 35188735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots.
    Harris RD; Amin VA; Lau B; Weiss EA
    ACS Nano; 2016 Jan; 10(1):1395-403. PubMed ID: 26727219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subpicosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a Molecular Acceptor Bound Through an Exciton-Delocalizing Ligand.
    Lian S; Weinberg DJ; Harris RD; Kodaimati MS; Weiss EA
    ACS Nano; 2016 Jun; 10(6):6372-82. PubMed ID: 27281685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating exciton structure and dynamics in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy.
    Seiler H; Palato S; Kambhampati P
    J Chem Phys; 2018 Aug; 149(7):074702. PubMed ID: 30134703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Valley Splitting of Exciton Emission in Colloidal PbSe Quantum Dots When the Interdot Distance Coincides with Onset of Förster Resonance Energy Transfer.
    Omata T; Asano H; Sakai M; Terai Y; Kita M
    J Phys Chem Lett; 2021 Apr; 12(12):3120-3126. PubMed ID: 33755486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits of exciton delocalization in molecular aggregates.
    Scholes GD
    Faraday Discuss; 2019 Dec; 221(0):265-280. PubMed ID: 31538634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the electronic coupling between CdSe quantum dots and thiol capping ligands via pH and ligand selection.
    Liang Y; Thorne JE; Parkinson BA
    Langmuir; 2012 Jul; 28(30):11072-7. PubMed ID: 22738349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.