These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32852497)

  • 1. Open-tubular radially cyclical electric field-flow fractionation (OTR-CyElFFF): an online concentric distribution strategy for simultaneous separation of microparticles.
    Liu L; Yang C; Liu C; Piao J; Kaw HY; Cui J; Shang H; Ri HC; Kim JM; Jin M; Li D
    Lab Chip; 2020 Sep; 20(19):3535-3543. PubMed ID: 32852497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biased cyclical electrical field-flow fractionation for separation of submicron particles.
    Ornthai M; Siripinyanond A; Gale BK
    Anal Bioanal Chem; 2016 Jan; 408(3):855-63. PubMed ID: 26612733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    Anal Chem; 2013 Dec; 85(23):11225-32. PubMed ID: 24180262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniaturized flow fractionation device assisted by a pulsed electric field for nanoparticle separation.
    Lao AI; Trau D; Hsin IM
    Anal Chem; 2002 Oct; 74(20):5364-9. PubMed ID: 12403594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field-flow fractionation and asymmetrical flow field-flow fractionation.
    Shiri F; Petersen KE; Romanov V; Zou Q; Gale BK
    Anal Bioanal Chem; 2020 Mar; 412(7):1563-1572. PubMed ID: 31938845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of cyclical electrical field flow fractionation.
    Srinivas M; Sant HJ; Gale BK
    Electrophoresis; 2010 Oct; 31(20):3372-9. PubMed ID: 20922757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for effective field measurements in electrical field-flow fractionation.
    Merugu S; Sant HJ; Gale BK
    Electrophoresis; 2012 Mar; 33(6):1040-7. PubMed ID: 22528424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of polymerized liposomes using a combination of dc and cyclical electrical field-flow fractionation.
    Sant HJ; Chakravarty S; Merugu S; Ferguson CG; Gale BK
    Anal Chem; 2012 Oct; 84(19):8323-9. PubMed ID: 22928609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Particle Separation Driven by 3D Ag-PDMS Electrodes with Dielectric Electrophoretic Force Coupled with Inertia Force.
    Li X; Duan J; Qu Z; Wang J; Ji M; Zhang B
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-flow fractionation of nano- and microparticles in rotating coiled columns.
    Fedotov PS; Ermolin MS; Katasonova ON
    J Chromatogr A; 2015 Feb; 1381():202-9. PubMed ID: 25597894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field-flow fractionation.
    Johann C; Elsenberg S; Schuch H; Rösch U
    Anal Chem; 2015 Apr; 87(8):4292-8. PubMed ID: 25789885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation.
    Kantak AS; Srinivas M; Gale BK
    Anal Chem; 2006 Apr; 78(8):2557-64. PubMed ID: 16615764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle characterization by cyclical electrical field-flow fractionation.
    Gigault J; Gale BK; Le Hecho I; Lespes G
    Anal Chem; 2011 Sep; 83(17):6565-72. PubMed ID: 21774534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention behavior of microparticles in gravitational field-flow fractionation (GrFFF): effect of ionic strength.
    Woo IS; Jung EC; Lee S
    Talanta; 2015 Jan; 132():945-53. PubMed ID: 25476401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.
    Iiguni Y; Tanaka A; Kitagawa S; Ohtani H
    Anal Sci; 2016; 32(1):41-8. PubMed ID: 26753704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y; Pan X; Chen L; Wan QH
    J Chromatogr A; 2011 Jun; 1218(25):3908-14. PubMed ID: 21592484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical field-flow fractionation in particle separation. 1. Monodisperse standards.
    Caldwell KD; Gao YS
    Anal Chem; 1993 Jul; 65(13):1764-72. PubMed ID: 8368528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.