BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 32852726)

  • 1. Impact of cultivation strategy, freeze-drying process, and storage conditions on survival, membrane integrity, and inactivation kinetics of Bifidobacterium longum.
    Haindl R; Neumayr A; Frey A; Kulozik U
    Folia Microbiol (Praha); 2020 Dec; 65(6):1039-1050. PubMed ID: 32852726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foam-Mat Freeze-Drying of Bifidobacterium longum RO175: Viability and Refrigerated Storage Stability.
    Izquierdo-López D; Goulet J; Ratti C
    J Food Sci; 2017 Jan; 82(1):90-96. PubMed ID: 27886651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage.
    Wang YC; Yu RC; Chou CC
    Int J Food Microbiol; 2004 Jun; 93(2):209-17. PubMed ID: 15135959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19.
    Ambros S; Hofer F; Kulozik U
    J Appl Microbiol; 2018 Oct; 125(4):1128-1136. PubMed ID: 29851297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria.
    Celik OF; O'Sullivan DJ
    J Dairy Sci; 2013 Jun; 96(6):3506-16. PubMed ID: 23587387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria.
    Strasser S; Neureiter M; Geppl M; Braun R; Danner H
    J Appl Microbiol; 2009 Jul; 107(1):167-77. PubMed ID: 19302330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a Bifidobacterium longum production process.
    Kiviharju K; Leisola M; Eerikäinen T
    J Biotechnol; 2005 May; 117(3):299-308. PubMed ID: 15862361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Proline on the Freeze-Drying Survival Rate of
    Cui S; Zhou W; Tang X; Zhang Q; Yang B; Zhao J; Mao B; Zhang H
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of protective agents on the storage stability of freeze-dried Ligilactobacillus salivarius CECT5713.
    Guerrero Sanchez M; Passot S; Campoy S; Olivares M; Fonseca F
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7235-7249. PubMed ID: 36192613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting viability of Bifidobacterium bifidum during spray drying.
    Shokri Z; Fazeli MR; Ardjmand M; Mousavi SM; Gilani K
    Daru; 2015 Jan; 23(1):7. PubMed ID: 25618319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni.
    Portner DC; Leuschner RG; Murray BS
    Cryobiology; 2007 Jun; 54(3):265-70. PubMed ID: 17482158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage.
    Broeckx G; Vandenheuvel D; Henkens T; Kiekens S; van den Broek MFL; Lebeer S; Kiekens F
    Int J Pharm; 2017 Dec; 534(1-2):35-41. PubMed ID: 28986319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined influence of fermentation and drying conditions on survival and metabolic activity of starter and probiotic cultures after low-temperature vacuum drying.
    Bauer SA; Schneider S; Behr J; Kulozik U; Foerst P
    J Biotechnol; 2012 Jun; 159(4):351-7. PubMed ID: 21723344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation mechanisms of lactic acid starter cultures preserved by drying processes.
    Santivarangkna C; Kulozik U; Foerst P
    J Appl Microbiol; 2008 Jul; 105(1):1-13. PubMed ID: 18266696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the freeze-drying process on product appearance, residual moisture content, viability, and batch uniformity of freeze-dried bacterial cultures safeguarded at culture collections.
    Peiren J; Hellemans A; De Vos P
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6239-6249. PubMed ID: 26875878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).
    Pehkonen KS; Roos YH; Miao S; Ross RP; Stanton C
    J Appl Microbiol; 2008 Jun; 104(6):1732-43. PubMed ID: 18248378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effects of whey protein hydrolysate on Bifidobacterium animalis ssp. lactis Probio-M8 during freeze-drying and storage.
    Wang H; Huang T; Liu K; Yu J; Yao G; Zhang W; Zhang H; Sun T
    J Dairy Sci; 2022 Sep; 105(9):7308-7321. PubMed ID: 35931487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water activity and protective solutes on growth and subsequent survival to air-drying of Lactobacillus and Bifidobacterium cultures.
    Champagne CP; Raymond Y; Simon JP
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):745-56. PubMed ID: 22350318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients.
    Saarela M; Virkajärvi I; Alakomi HL; Mattila-Sandholm T; Vaari A; Suomalainen T; Mättö J
    J Appl Microbiol; 2005; 99(6):1330-9. PubMed ID: 16313405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions.
    Shamekhi F; Shuhaimi M; Ariff A; Manap YA
    Folia Microbiol (Praha); 2013 Mar; 58(2):91-101. PubMed ID: 22843029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.