These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32852940)

  • 21. A versatile strategy for grafting polymers to wood cell walls.
    Keplinger T; Cabane E; Chanana M; Hass P; Merk V; Gierlinger N; Burgert I
    Acta Biomater; 2015 Jan; 11():256-63. PubMed ID: 25242649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis.
    Fahlén J; Salmén L
    Biomacromolecules; 2005; 6(1):433-8. PubMed ID: 15638549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancement and challenges in sample preparation for atomic force microscopy and infrared microscopy for wood-based materials.
    Schoeffmann EA; Mahendran AR; Zikulnig-Rusch E; Plank H
    J Microsc; 2023 Feb; 289(2):80-90. PubMed ID: 36263621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous Nanoscale Imaging of Chemical and Architectural Heterogeneity on Yeast Cell Wall Particles.
    Li W; Wang H; Xu XG; Yu Y
    Langmuir; 2020 Jun; 36(22):6169-6177. PubMed ID: 32419466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry.
    Jin X; Kasal B
    R Soc Open Sci; 2016 Oct; 3(10):160248. PubMed ID: 27853541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.
    Sheikhi A; Yang H; Alam MN; van de Ven TG
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana).
    Agarwal UP
    Planta; 2006 Oct; 224(5):1141-53. PubMed ID: 16761135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy.
    Casdorff K; Keplinger T; Rüggeberg M; Burgert I
    Planta; 2018 May; 247(5):1123-1132. PubMed ID: 29380141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution.
    Shamitko-Klingensmith N; Molchanoff KM; Burke KA; Magnone GJ; Legleiter J
    Langmuir; 2012 Sep; 28(37):13411-22. PubMed ID: 22924735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wood Deformation Leads to Rearrangement of Molecules at the Nanoscale.
    Felhofer M; Bock P; Singh A; Prats-Mateu B; Zirbs R; Gierlinger N
    Nano Lett; 2020 Apr; 20(4):2647-2653. PubMed ID: 32196350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood.
    Abe K; Iwamoto S; Yano H
    Biomacromolecules; 2007 Oct; 8(10):3276-8. PubMed ID: 17784769
    [No Abstract]   [Full Text] [Related]  

  • 32. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy.
    Sahin O; Erina N
    Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic force microscopy characterization of cellulose nanocrystals.
    Lahiji RR; Xu X; Reifenberger R; Raman A; Rudie A; Moon RJ
    Langmuir; 2010 Mar; 26(6):4480-8. PubMed ID: 20055370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification.
    Cho H; Felts JR; Yu MF; Bergman LA; Vakakis AF; King WP
    Nanotechnology; 2013 Nov; 24(44):444007. PubMed ID: 24113150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.
    Shaheen TI; Emam HE
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1599-1606. PubMed ID: 28988844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Structural Origins of Wood Cell Wall Toughness.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Adv Mater; 2020 Apr; 32(16):e1907693. PubMed ID: 32115772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization.
    Dazzi A; Prater CB; Hu Q; Chase DB; Rabolt JF; Marcott C
    Appl Spectrosc; 2012 Dec; 66(12):1365-84. PubMed ID: 23231899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor.
    Dazzi A; Prazeres R; Glotin F; Ortega JM
    Opt Lett; 2005 Sep; 30(18):2388-90. PubMed ID: 16196328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.