These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32853099)

  • 1. Organic Amendments for Pathogen and Nematode Control.
    Rosskopf E; Di Gioia F; Hong JC; Pisani C; Kokalis-Burelle N
    Annu Rev Phytopathol; 2020 Aug; 58():277-311. PubMed ID: 32853099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fumigants and non-fumigants on nematode and weed control, crop yield, and soil microbial diversity and predicted functionality in a strawberry production system.
    Castellano-Hinojosa A; Noling JW; Bui HX; Desaeger JA; Strauss SL
    Sci Total Environ; 2022 Dec; 852():158285. PubMed ID: 36030874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Meta-Analysis of the Impact of Anaerobic Soil Disinfestation on Pest Suppression and Yield of Horticultural Crops.
    Shrestha U; Augé RM; Butler DM
    Front Plant Sci; 2016; 7():1254. PubMed ID: 27617017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression.
    Bonanomi G; Lorito M; Vinale F; Woo SL
    Annu Rev Phytopathol; 2018 Aug; 56():1-20. PubMed ID: 29768137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community.
    Andreo-Jimenez B; Schilder MT; Nijhuis EH; Te Beest DE; Bloem J; Visser JHM; van Os G; Brolsma K; de Boer W; Postma J
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile compounds as potential bio-fumigants against plant-parasitic nematodes - a mini review.
    Bui HX; Desaeger JA
    J Nematol; 2021; 53():. PubMed ID: 33860253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying microorganisms involved in specific pathogen suppression in soil.
    Borneman J; Becker JO
    Annu Rev Phytopathol; 2007; 45():153-72. PubMed ID: 17506652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probiotic Bacteria, Anaerobic Soil Disinfestation, and Mustard Cover Crop Biofumigation Suppress Soilborne Disease and Increase Yield of Strawberry in a Perennial Organic Production System.
    Rahman M; Islam T; Jett L; Kotcon J
    Plant Dis; 2023 Aug; 107(8):2490-2499. PubMed ID: 36750719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide.
    Martin FN
    Annu Rev Phytopathol; 2003; 41():325-50. PubMed ID: 14527332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil Disinfestation: From Soil Treatment to Soil and Plant Health.
    Gullino ML; Garibaldi A; Gamliel A; Katan J
    Plant Dis; 2022 Jun; 106(6):1541-1554. PubMed ID: 34978872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ORGANIC VS CONVENTIONAL: SOIL NEMATODE COMMUNITY STRUCTURE AND FUNCTION.
    Kapp C; Storey SG; Malan AP
    Commun Agric Appl Biol Sci; 2014; 79(2):297-300. PubMed ID: 26084108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep injection and the potential of biochar to reduce fumigant emissions and effects on nematode control.
    Gao S; Doll DA; Stanghellini MS; Westerdahl BB; Wang D; Hanson BD
    J Environ Manage; 2018 Oct; 223():469-477. PubMed ID: 29957420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Deployment of Systems-Based Approaches for the Management of Soilborne Plant Pathogens.
    Chellemi DO; Gamliel A; Katan J; Subbarao KV
    Phytopathology; 2016 Mar; 106(3):216-25. PubMed ID: 26574784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida.
    McSorley R
    J Nematol; 2011 Jun; 43(2):69-81. PubMed ID: 22791915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the Key Agents in a Disease-Suppressed Soil Managed by Reductive Soil Disinfestation.
    Liu L; Huang X; Zhao J; Zhang J; Cai Z
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30737346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes.
    Stirling GR; Rames E; Stirling AM; Hamill S
    J Nematol; 2011 Sep; 43(3-4):135-48. PubMed ID: 23431051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil organic matter and management of plant-parasitic nematodes.
    Widmer TL; Mitkowski NA; Abawi GS
    J Nematol; 2002 Dec; 34(4):289-95. PubMed ID: 19265946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Agricultural Practices in Strawberry Fields Induce Plant-Nematode Interaction towards
    Hammam MMA; Abd-El-Khair H; El-Nagdi WMA; Abd-Elgawad MMM
    Life (Basel); 2022 Oct; 12(10):. PubMed ID: 36295007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi.
    Meyer SL; Roberts DP
    J Nematol; 2002 Mar; 34(1):1-8. PubMed ID: 19265899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.