These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32853239)

  • 21. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation.
    Wang J; Liu J; Zhang G; Guo S
    ISA Trans; 2022 Apr; 123():87-97. PubMed ID: 34217496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram.
    Shi K; Huang R; Peng Z; Mu F; Yang X
    Front Neurosci; 2021; 15():704603. PubMed ID: 34867145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Sensors (Basel); 2011; 11(1):207-27. PubMed ID: 22346574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning.
    Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot.
    Zhang S; Fan L; Ye J; Chen G; Fu C; Leng Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3106-3117. PubMed ID: 37490379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force.
    Ren J; Wang A; Li H; Yue X; Meng L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.
    Tortora S; Tonin L; Sieghartsleitner S; Ortner R; Guger C; Lennon O; Coyle D; Menegatti E; Felice AD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2988-3003. PubMed ID: 37432820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot.
    Qin L; Ji H; Chen M; Wang K
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.