These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32853239)
61. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton. Calle-Siguencia J; Callejas-Cuervo M; García-Reino S Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340 [TBL] [Abstract][Full Text] [Related]
62. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System. Gao B; Wei C; Ma H; Yang S; Ma X; Zhang S Appl Bionics Biomech; 2018; 2018():1391032. PubMed ID: 30405746 [TBL] [Abstract][Full Text] [Related]
63. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential. Soriano-Segura P; Ortiz M; Iáñez E; Azorín JM Comput Methods Programs Biomed; 2024 Oct; 255():108332. PubMed ID: 39053352 [TBL] [Abstract][Full Text] [Related]
64. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns]. Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968 [TBL] [Abstract][Full Text] [Related]
65. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control. Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M J Neuroeng Rehabil; 2018 Sep; 15(1):84. PubMed ID: 30231916 [TBL] [Abstract][Full Text] [Related]
66. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer. Chen Z; Guo Q; Li T; Yan Y; Jiang D IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939 [TBL] [Abstract][Full Text] [Related]
67. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
68. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control. Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587 [TBL] [Abstract][Full Text] [Related]
69. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots. Jung JY; Heo W; Yang H; Park H Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986 [TBL] [Abstract][Full Text] [Related]
70. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation. Zhu Y; Zheng T; Jin H; Yang J; Zhao J Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545 [TBL] [Abstract][Full Text] [Related]
71. Gait Phase Classification and Assist Torque Prediction for a Lower Limb Exoskeleton System Using Kernel Recursive Least-Squares Method. Ma Y; Wu X; Wang C; Yi Z; Liang G Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835626 [TBL] [Abstract][Full Text] [Related]
72. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller. Narayan J; Abbas M; Dwivedy SK Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333 [TBL] [Abstract][Full Text] [Related]
73. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait. Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083 [TBL] [Abstract][Full Text] [Related]
74. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton. Wang J; Fei Y; Chen W Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736 [TBL] [Abstract][Full Text] [Related]
75. A brain-controlled lower-limb exoskeleton for human gait training. Liu D; Chen W; Pei Z; Wang J Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520 [TBL] [Abstract][Full Text] [Related]
76. Cross-domain prediction approach of human lower limb voluntary movement intention for exoskeleton robot based on EEG signals. Dong R; Zhang X; Li H; Lu Z; Li C; Zhu A Front Bioeng Biotechnol; 2024; 12():1448903. PubMed ID: 39246298 [TBL] [Abstract][Full Text] [Related]
77. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. Wu CH; Mao HF; Hu JS; Wang TY; Tsai YJ; Hsu WL J Neuroeng Rehabil; 2018 Mar; 15(1):14. PubMed ID: 29506530 [TBL] [Abstract][Full Text] [Related]
78. Application of EMG signals for controlling exoskeleton robots. Fleischer C; Wege A; Kondak K; Hommel G Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866 [TBL] [Abstract][Full Text] [Related]
79. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation. Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023 [TBL] [Abstract][Full Text] [Related]
80. Towards an SEMG-based tele-operated robot for masticatory rehabilitation. Kalani H; Moghimi S; Akbarzadeh A Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]