These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32853248)

  • 1. Computational estimates of mechanical constraints on cell migration through the extracellular matrix.
    Maxian O; Mogilner A; Strychalski W
    PLoS Comput Biol; 2020 Aug; 16(8):e1008160. PubMed ID: 32853248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of actin protrusion dynamics in cell migration through a degradable viscoelastic extracellular matrix: Insights from a computational model.
    Heck T; Vargas DA; Smeets B; Ramon H; Van Liedekerke P; Van Oosterwyck H
    PLoS Comput Biol; 2020 Jan; 16(1):e1007250. PubMed ID: 31929522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of cell migration mechanical strategies in three-dimensional matrices: a computational study.
    Zhu J; Mogilner A
    Interface Focus; 2016 Oct; 6(5):20160040. PubMed ID: 27708764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of extracellular matrix fiber cross-linkage on cancer cell motility and surrounding matrix deformation.
    Omata S; Fukuda K; Sakai Y; Ohuchida K; Morita Y
    Biochem Biophys Res Commun; 2023 Sep; 673():44-50. PubMed ID: 37356144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
    Kim MC; Silberberg YR; Abeyaratne R; Kamm RD; Asada HH
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E390-E399. PubMed ID: 29295934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell biophysical stimuli in lobopodium formation: a computer based approach.
    Serrano-Alcalde F; García-Aznar JM; Gómez-Benito MJ
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):496-505. PubMed ID: 33111554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry and biomechanics of cell motility.
    Li S; Guan JL; Chien S
    Annu Rev Biomed Eng; 2005; 7():105-50. PubMed ID: 16004568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rear cortex contraction aids in nuclear transit during confined migration by increasing pressure in the cell posterior.
    Keys J; Cheung BCH; Elpers MA; Wu M; Lammerding J
    J Cell Sci; 2024 Jun; 137(12):. PubMed ID: 38832512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cell migration regulated by cell extracellular-matrix micromechanical coupling.
    Zheng Y; Nan H; Liu Y; Fan Q; Wang X; Liu R; Liu L; Ye F; Sun B; Jiao Y
    Phys Rev E; 2019 Oct; 100(4-1):043303. PubMed ID: 31770879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration.
    Malik AA; Wennberg B; Gerlee P
    Bull Math Biol; 2020 Apr; 82(4):49. PubMed ID: 32248312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the force field required for nucleus deformation during cell migration through constrictions.
    Estabrook ID; Thiam HR; Piel M; Hawkins RJ
    PLoS Comput Biol; 2021 May; 17(5):e1008592. PubMed ID: 34029312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell migration: regulation of force on extracellular-matrix-integrin complexes.
    Sheetz MP; Felsenfeld DP; Galbraith CG
    Trends Cell Biol; 1998 Feb; 8(2):51-4. PubMed ID: 9695809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network.
    Kim MC; Whisler J; Silberberg YR; Kamm RD; Asada HH
    PLoS Comput Biol; 2015 Oct; 11(10):e1004535. PubMed ID: 26436883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain.
    Doyle AD; Sykora DJ; Pacheco GG; Kutys ML; Yamada KM
    Dev Cell; 2021 Mar; 56(6):826-841.e4. PubMed ID: 33705692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels.
    Scianna M; Preziosi L
    J Theor Biol; 2013 Jan; 317():394-406. PubMed ID: 23147234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates.
    Giverso C; Arduino A; Preziosi L
    Bull Math Biol; 2018 May; 80(5):1017-1045. PubMed ID: 28409417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring collective cell movement and extracellular matrix interactions using magnetic resonance imaging.
    Chen Y; Dodd SJ; Tangrea MA; Emmert-Buck MR; Koretsky AP
    Sci Rep; 2013; 3():1879. PubMed ID: 23698816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.