These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 3285347)

  • 1. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited.
    Reiter HO; Stryker MP
    Proc Natl Acad Sci U S A; 1988 May; 85(10):3623-7. PubMed ID: 3285347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex.
    Frank MG; Jha SK; Coleman T
    Neuroreport; 2006 Sep; 17(13):1459-63. PubMed ID: 16932158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex.
    Reiter HO; Waitzman DM; Stryker MP
    Exp Brain Res; 1986; 65(1):182-8. PubMed ID: 3803504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity.
    Ramoa AS; Paradiso MA; Freeman RD
    Exp Brain Res; 1988; 73(2):285-96. PubMed ID: 3215305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited.
    Hata Y; Tsumoto T; Stryker MP
    Neuron; 1999 Feb; 22(2):375-81. PubMed ID: 10069342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of cyclic AMP-dependent protein kinase does not prevent the reverse ocular dominance shift in kitten visual cortex.
    Shimegi S; Fischer QS; Yang Y; Sato H; Daw NW
    J Neurophysiol; 2003 Dec; 90(6):4027-32. PubMed ID: 12944540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-driven axon retraction in the pharmacologically inactivated visual cortex does not require synaptic transmission.
    Watanabe K; Morishima Y; Toigawa M; Hata Y
    PLoS One; 2009; 4(1):e4193. PubMed ID: 19142221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation.
    Kasamatsu T; Imamura K; Mataga N; Hartveit E; Heggelund U; Heggelund P
    Neuroscience; 1998 Feb; 82(3):687-700. PubMed ID: 9483528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
    Chapman B; Jacobson MD; Reiter HO; Stryker MP
    Nature; 1986 Nov 13-19; 324(6093):154-6. PubMed ID: 3785380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex.
    Hata Y; Stryker MP
    Science; 1994 Sep; 265(5179):1732-5. PubMed ID: 8085163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical period of experience-driven axon retraction in the pharmacologically inhibited visual cortex.
    Morishima Y; Toigawa M; Ohmura N; Yoneda T; Tagane Y; Hata Y
    Cereb Cortex; 2013 Oct; 23(10):2423-8. PubMed ID: 22875858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strabismus does not prevent recovery from monocular deprivation: a challenge for simple Hebbian models of synaptic modification.
    Malach R; Van Sluyters RC
    Vis Neurosci; 1989 Sep; 3(3):267-73. PubMed ID: 2487106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of muscarinic acetylcholine receptors in ocular dominance plasticity.
    Gu Q; Singer W
    EXS; 1989; 57():305-14. PubMed ID: 2533101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of NMDA antagonists on developmental plasticity in kitten visual cortex.
    Rauschecker JP; Egert U; Kossel A
    Int J Dev Neurosci; 1990; 8(4):425-35. PubMed ID: 1979202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic plasticity in visual cortex: comparison of theory with experiment.
    Clothiaux EE; Bear MF; Cooper LN
    J Neurophysiol; 1991 Nov; 66(5):1785-804. PubMed ID: 1765807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reemergence of ocular dominance plasticity during recovery from the effects of propranolol infused in kitten visual cortex.
    Shirokawa T; Kasamatsu T
    Exp Brain Res; 1987; 68(3):466-76. PubMed ID: 2826211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways.
    Kuhlman SJ; Lu J; Lazarus MS; Huang ZJ
    PLoS Comput Biol; 2010 Jun; 6(6):e1000797. PubMed ID: 20532211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.