BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32853702)

  • 1. Estragole: DNA adduct formation in primary rat hepatocytes and genotoxic potential in HepG2-CYP1A2 cells.
    Schulte-Hubbert R; Küpper JH; Thomas AD; Schrenk D
    Toxicology; 2020 Nov; 444():152566. PubMed ID: 32853702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular levels and molecular dynamics simulations of estragole DNA adducts point at inefficient repair resulting from limited distortion of the double-stranded DNA helix.
    Yang S; Diem M; Liu JDH; Wesseling S; Vervoort J; Oostenbrink C; Rietjens IMCM
    Arch Toxicol; 2020 Apr; 94(4):1349-1365. PubMed ID: 32185416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and quantification of specific DNA adducts by liquid chromatography-tandem mass spectrometry in the livers of rats given estragole at the carcinogenic dose.
    Ishii Y; Suzuki Y; Hibi D; Jin M; Fukuhara K; Umemura T; Nishikawa A
    Chem Res Toxicol; 2011 Apr; 24(4):532-41. PubMed ID: 21384859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estragole DNA adduct accumulation in human liver HepaRG cells upon repeated in vitro exposure.
    Yang S; Wesseling S; Rietjens IMCM
    Toxicol Lett; 2021 Feb; 337():1-6. PubMed ID: 33189830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.
    Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes.
    Nauwelaërs G; Bellamri M; Fessard V; Turesky RJ; Langouët S
    Chem Res Toxicol; 2013 Sep; 26(9):1367-77. PubMed ID: 23898916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo genotoxicity of estragole in male F344 rats.
    Ding W; Levy DD; Bishop ME; Pearce MG; Davis KJ; Jeffrey AM; Duan JD; Williams GM; White GA; Lyn-Cook LE; Manjanatha MG
    Environ Mol Mutagen; 2015 May; 56(4):356-65. PubMed ID: 25361439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivation of estragole and anethole leads to common adducts in DNA and hemoglobin.
    Bergau N; Herfurth UM; Sachse B; Abraham K; Monien BH
    Food Chem Toxicol; 2021 Jul; 153():112253. PubMed ID: 34015424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin.
    Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM
    Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect.
    Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estragole: a weak direct-acting food-borne genotoxin and potential carcinogen.
    Martins C; Cação R; Cole KJ; Phillips DH; Laires A; Rueff J; Rodrigues AS
    Mutat Res; 2012 Aug; 747(1):86-92. PubMed ID: 22561883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunochemical identification of hepatic protein adducts derived from estragole.
    Wakazono H; Gardner I; Eliasson E; Coughtrie MW; Kenna JG; Caldwell J
    Chem Res Toxicol; 1998 Aug; 11(8):863-72. PubMed ID: 9705747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progenitor-derived hepatocyte-like (B-13/H) cells metabolise 1'-hydroxyestragole to a genotoxic species via a SULT2B1-dependent mechanism.
    Probert PM; Palmer JM; Alhusainy W; Amer AO; Rietjens IM; White SA; Jones DE; Wright MC
    Toxicol Lett; 2016 Jan; 243():98-110. PubMed ID: 26739637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats.
    Suzuki Y; Umemura T; Hibi D; Inoue T; Jin M; Ishii Y; Sakai H; Nohmi T; Yanai T; Nishikawa A; Ogawa K
    Arch Toxicol; 2012 Oct; 86(10):1593-601. PubMed ID: 22576464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and fate of DNA adducts of alpha- and beta-asarone in rat hepatocytes.
    Stegmüller S; Schrenk D; Cartus AT
    Food Chem Toxicol; 2018 Jun; 116(Pt B):138-146. PubMed ID: 29654846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicokinetics of acrylamide in primary rat hepatocytes: coupling to glutathione is faster than conversion to glycidamide.
    Watzek N; Scherbl D; Schug M; Hengstler JG; Baum M; Habermeyer M; Richling E; Eisenbrand G
    Arch Toxicol; 2013 Aug; 87(8):1545-56. PubMed ID: 23568512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes.
    Bacon JR; Williamson G; Garner RC; Lappin G; Langouët S; Bao Y
    Carcinogenesis; 2003 Dec; 24(12):1903-11. PubMed ID: 12949046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA adduct formation by 7H-dibenzo[c,g]carbazole and its tissue- and organ-specific derivatives in Chinese hamster V79 cell lines stably expressing cytochrome P450 enzymes.
    Gábelová A; Binková B; Valovicová Z; Srám RJ
    Environ Mol Mutagen; 2004; 44(5):448-58. PubMed ID: 15534862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.