These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32853702)
1. Estragole: DNA adduct formation in primary rat hepatocytes and genotoxic potential in HepG2-CYP1A2 cells. Schulte-Hubbert R; Küpper JH; Thomas AD; Schrenk D Toxicology; 2020 Nov; 444():152566. PubMed ID: 32853702 [TBL] [Abstract][Full Text] [Related]
2. Cellular levels and molecular dynamics simulations of estragole DNA adducts point at inefficient repair resulting from limited distortion of the double-stranded DNA helix. Yang S; Diem M; Liu JDH; Wesseling S; Vervoort J; Oostenbrink C; Rietjens IMCM Arch Toxicol; 2020 Apr; 94(4):1349-1365. PubMed ID: 32185416 [TBL] [Abstract][Full Text] [Related]
3. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes. Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636 [TBL] [Abstract][Full Text] [Related]
4. Detection and quantification of specific DNA adducts by liquid chromatography-tandem mass spectrometry in the livers of rats given estragole at the carcinogenic dose. Ishii Y; Suzuki Y; Hibi D; Jin M; Fukuhara K; Umemura T; Nishikawa A Chem Res Toxicol; 2011 Apr; 24(4):532-41. PubMed ID: 21384859 [TBL] [Abstract][Full Text] [Related]
5. Estragole DNA adduct accumulation in human liver HepaRG cells upon repeated in vitro exposure. Yang S; Wesseling S; Rietjens IMCM Toxicol Lett; 2021 Feb; 337():1-6. PubMed ID: 33189830 [TBL] [Abstract][Full Text] [Related]
6. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling. Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077 [TBL] [Abstract][Full Text] [Related]
7. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes. Nauwelaërs G; Bellamri M; Fessard V; Turesky RJ; Langouët S Chem Res Toxicol; 2013 Sep; 26(9):1367-77. PubMed ID: 23898916 [TBL] [Abstract][Full Text] [Related]
8. In vivo genotoxicity of estragole in male F344 rats. Ding W; Levy DD; Bishop ME; Pearce MG; Davis KJ; Jeffrey AM; Duan JD; Williams GM; White GA; Lyn-Cook LE; Manjanatha MG Environ Mol Mutagen; 2015 May; 56(4):356-65. PubMed ID: 25361439 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation of estragole and anethole leads to common adducts in DNA and hemoglobin. Bergau N; Herfurth UM; Sachse B; Abraham K; Monien BH Food Chem Toxicol; 2021 Jul; 153():112253. PubMed ID: 34015424 [TBL] [Abstract][Full Text] [Related]
10. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034 [TBL] [Abstract][Full Text] [Related]
11. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806 [TBL] [Abstract][Full Text] [Related]
12. Estragole: a weak direct-acting food-borne genotoxin and potential carcinogen. Martins C; Cação R; Cole KJ; Phillips DH; Laires A; Rueff J; Rodrigues AS Mutat Res; 2012 Aug; 747(1):86-92. PubMed ID: 22561883 [TBL] [Abstract][Full Text] [Related]
13. Immunochemical identification of hepatic protein adducts derived from estragole. Wakazono H; Gardner I; Eliasson E; Coughtrie MW; Kenna JG; Caldwell J Chem Res Toxicol; 1998 Aug; 11(8):863-72. PubMed ID: 9705747 [TBL] [Abstract][Full Text] [Related]
14. Progenitor-derived hepatocyte-like (B-13/H) cells metabolise 1'-hydroxyestragole to a genotoxic species via a SULT2B1-dependent mechanism. Probert PM; Palmer JM; Alhusainy W; Amer AO; Rietjens IM; White SA; Jones DE; Wright MC Toxicol Lett; 2016 Jan; 243():98-110. PubMed ID: 26739637 [TBL] [Abstract][Full Text] [Related]
15. Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats. Suzuki Y; Umemura T; Hibi D; Inoue T; Jin M; Ishii Y; Sakai H; Nohmi T; Yanai T; Nishikawa A; Ogawa K Arch Toxicol; 2012 Oct; 86(10):1593-601. PubMed ID: 22576464 [TBL] [Abstract][Full Text] [Related]
16. Formation and fate of DNA adducts of alpha- and beta-asarone in rat hepatocytes. Stegmüller S; Schrenk D; Cartus AT Food Chem Toxicol; 2018 Jun; 116(Pt B):138-146. PubMed ID: 29654846 [TBL] [Abstract][Full Text] [Related]
17. Toxicokinetics of acrylamide in primary rat hepatocytes: coupling to glutathione is faster than conversion to glycidamide. Watzek N; Scherbl D; Schug M; Hengstler JG; Baum M; Habermeyer M; Richling E; Eisenbrand G Arch Toxicol; 2013 Aug; 87(8):1545-56. PubMed ID: 23568512 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling. Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143 [TBL] [Abstract][Full Text] [Related]
19. Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes. Bacon JR; Williamson G; Garner RC; Lappin G; Langouët S; Bao Y Carcinogenesis; 2003 Dec; 24(12):1903-11. PubMed ID: 12949046 [TBL] [Abstract][Full Text] [Related]
20. DNA adduct formation by 7H-dibenzo[c,g]carbazole and its tissue- and organ-specific derivatives in Chinese hamster V79 cell lines stably expressing cytochrome P450 enzymes. Gábelová A; Binková B; Valovicová Z; Srám RJ Environ Mol Mutagen; 2004; 44(5):448-58. PubMed ID: 15534862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]