These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32853804)

  • 21. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microneedles with Tunable Dissolution Rate.
    Kathuria H; Lim D; Cai J; Chung BG; Kang L
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5061-5068. PubMed ID: 33455299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of transdermal delivery of sumatriptan succinate using a novel self-dissolving microneedle array fabricated from sodium hyaluronate in rats.
    Wu D; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    Biol Pharm Bull; 2015; 38(3):365-73. PubMed ID: 25757917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations.
    Kirkby M; Hutton ARJ; Donnelly RF
    Pharm Res; 2020 Jun; 37(6):117. PubMed ID: 32488611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):267-76. PubMed ID: 24120887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery.
    Chen BZ; Ashfaq M; Zhang XP; Zhang JN; Guo XD
    J Drug Target; 2018 Sep; 26(8):720-729. PubMed ID: 29301433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.
    Waghule T; Singhvi G; Dubey SK; Pandey MM; Gupta G; Singh M; Dua K
    Biomed Pharmacother; 2019 Jan; 109():1249-1258. PubMed ID: 30551375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Transdermal Protein Delivery Strategy via Electrohydrodynamic Coating of PLGA Microparticles onto Microneedles.
    Angkawinitwong U; Courtenay AJ; Rodgers AM; Larrañeta E; McCarthy HO; Brocchini S; Donnelly RF; Williams GR
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12478-12488. PubMed ID: 32066234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic applications and pharmacoeconomics of microneedle technology.
    Richter-Johnson J; Kumar P; Choonara YE; du Toit LC; Pillay V
    Expert Rev Pharmacoecon Outcomes Res; 2018 Aug; 18(4):359-369. PubMed ID: 29889571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large Size Microneedle Patch to Deliver Lidocaine through Skin.
    Kathuria H; Li H; Pan J; Lim SH; Kochhar JS; Wu C; Kang L
    Pharm Res; 2016 Nov; 33(11):2653-67. PubMed ID: 27401408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress and perspective of microneedle system for anti-cancer drug delivery.
    Li D; Hu D; Xu H; Patra HK; Liu X; Zhou Z; Tang J; Slater N; Shen Y
    Biomaterials; 2021 Jan; 264():120410. PubMed ID: 32979655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of novel double-decker microneedle patches for transcutaneous vaccine delivery.
    Ono A; Azukizawa H; Ito S; Nakamura Y; Asada H; Quan YS; Kamiyama F; Katayama I; Hirobe S; Okada N
    Int J Pharm; 2017 Oct; 532(1):374-383. PubMed ID: 28855138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microneedles for transdermal drug delivery.
    Prausnitz MR
    Adv Drug Deliv Rev; 2004 Mar; 56(5):581-7. PubMed ID: 15019747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propionibacterium acnes and antimicrobial resistance in acne.
    Dessinioti C; Katsambas A
    Clin Dermatol; 2017; 35(2):163-167. PubMed ID: 28274353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new paradigm for numerical simulation of microneedle-based drug delivery aided by histology of microneedle-pierced skin.
    Han T; Das DB
    J Pharm Sci; 2015 Jun; 104(6):1993-2007. PubMed ID: 25821048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery.
    Cahill EM; Keaveney S; Stuettgen V; Eberts P; Ramos-Luna P; Zhang N; Dangol M; O'Cearbhaill ED
    Acta Biomater; 2018 Oct; 80():401-411. PubMed ID: 30201432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery.
    Luo Z; Sun W; Fang J; Lee K; Li S; Gu Z; Dokmeci MR; Khademhosseini A
    Adv Healthc Mater; 2019 Feb; 8(3):e1801054. PubMed ID: 30565887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid.
    Budhiraja A; Dhingra G
    Drug Deliv; 2015; 22(6):723-30. PubMed ID: 24786487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.