These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32854211)

  • 1. Analysis of a Process for Producing Battery Grade Lithium Hydroxide by Membrane Electrodialysis.
    Grageda M; Gonzalez A; Quispe A; Ushak S
    Membranes (Basel); 2020 Aug; 10(9):. PubMed ID: 32854211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application and Analysis of Bipolar Membrane Electrodialysis for LiOH Production at High Electrolyte Concentrations: Current Scope and Challenges.
    González A; Grágeda M; Quispe A; Ushak S; Sistat P; Cretin M
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Validation of a LiOH Production Process by Bipolar Membrane Electrodialysis from Concentrated LiCl.
    González A; Grágeda M; Ushak S
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis.
    Gao W; Fang Q; Yan H; Wei X; Wu K
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33671622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process for Producing Lithium Iodide Cleanly through Electrodialysis Metathesis.
    Li X; Wei X; Yang N; Wang X; Wang Q; Wu K
    ACS Omega; 2024 Apr; 9(14):16631-16639. PubMed ID: 38617683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium recovery using electrochemical technologies: Advances and challenges.
    Wu L; Zhang C; Kim S; Hatton TA; Mo H; Waite TD
    Water Res; 2022 Aug; 221():118822. PubMed ID: 35834973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling Lithium from Waste Lithium Bromide to Produce Lithium Hydroxide.
    Gao W; Wei X; Chen J; Jin J; Wu K; Meng W; Wang K
    Membranes (Basel); 2021 Sep; 11(10):. PubMed ID: 34677525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane electrolysis for the removal of Mg
    Díaz Nieto CH; Palacios NA; Verbeeck K; Prévoteau A; Rabaey K; Flexer V
    Water Res; 2019 May; 154():117-124. PubMed ID: 30782553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodialysis for the Concentration of Lithium-Containing Brines-An Investigation on the Applicability.
    Rögener F; Tetampel L
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale.
    Cassaro C; Virruso G; Culcasi A; Cipollina A; Tamburini A; Micale G
    ACS Sustain Chem Eng; 2023 Feb; 11(7):2989-3000. PubMed ID: 36844752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes.
    Avci AH; Messana DA; Santoro S; Tufa RA; Curcio E; Di Profio G; Fontananova E
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics.
    Foo ZH; Thomas JB; Heath SM; Garcia JA; Lienhard JH
    Environ Sci Technol; 2023 Oct; 57(39):14747-14759. PubMed ID: 37721998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine.
    Xu W; Liu D; He L; Zhao Z
    Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33256217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Depth Study of Li
    Uhlemann M; Madian M; Leones R; Oswald S; Maletti S; Eychmüller A; Mikhailova D
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37227-37238. PubMed ID: 32687305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation.
    Ounissi T; Belhadj Ammar R; Larchet C; Chaabane L; Baklouti L; Dammak L; Selmane Bel Hadj Hmida E
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of [Na
    Torres WR; Zeballos NC; Flexer V
    Faraday Discuss; 2023 Oct; 247(0):101-124. PubMed ID: 37477538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing the Formation of Salicylic Acid by Bipolar Membranes Electrodialysis.
    Medina-Collana JT; Rosales-Huamani JA; Franco-Gonzales EJ; Montaño-Pisfil JA
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes.
    Ash B; Nalajala VS; Popuri AK; Subbaiah T; Minakshi M
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32961689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and selective lithium recovery from desalination brine using an electrochemical system.
    Kim S; Joo H; Moon T; Kim SH; Yoon J
    Environ Sci Process Impacts; 2019 Apr; 21(4):667-676. PubMed ID: 30799481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.