BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 32854440)

  • 1. The Climate and Nutritional Impact of Beef in Different Dietary Patterns in Denmark.
    Mogensen L; Hermansen JE; Trolle E
    Foods; 2020 Aug; 9(9):. PubMed ID: 32854440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change mitigation through dietary change: a systematic review of empirical and modelling studies on the environmental footprints and health effects of 'sustainable diets'.
    Jarmul S; Dangour AD; Green R; Liew Z; Haines A; Scheelbeek PF
    Environ Res Lett; 2020 Dec; 15():123014. PubMed ID: 33897807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary recommendations in Spain -affordability and environmental sustainability?
    González-García S; Green RF; Scheelbeek PF; Harris F; Dangour AD
    J Clean Prod; 2020 May; 254():120125. PubMed ID: 33897918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recipe for change: Analyzing the climate and ecosystem impacts of the Brazilian diet shift.
    Bakman T; Hoffmann BS; Portugal-Pereira J
    Sci Total Environ; 2024 Jun; 930():172568. PubMed ID: 38649048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating health, nutrition, and environmental impacts of foods: a life cycle impact assessment and modelling analysis of foods in Canada.
    Jarvis S; Hadjikakou M; Wu J; Classens M; Chiavaroli L; Sievenpiper J; L'Abbe M; Jenkins D; Malik V
    Lancet Planet Health; 2024 Apr; 8 Suppl 1():S18. PubMed ID: 38632913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of current protein recommendations in adolescent athletes on a low-carbon diet.
    Franca PAP; Gonçalves Lima CKAZ; de Oliveira TM; Ferreira TJ; da Silva RRM; Loureiro LL; Pierucci APTR
    Front Nutr; 2022; 9():1016409. PubMed ID: 36185661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security.
    Jennings R; Henderson AD; Phelps A; Janda KM; van den Berg AE
    Nutrients; 2023 Jan; 15(1):. PubMed ID: 36615871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets.
    Heller MC; Willits-Smith A; Meyer R; Keoleian GA; Rose D
    Environ Res Lett; 2018 Apr; 13(4):044004. PubMed ID: 29853988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring tradeoffs among diet quality and environmental impacts in self-selected diets: a population-based study.
    Mazac R; Hyyrynen M; Kaartinen NE; Männistö S; Irz X; Hyytiäinen K; Tuomisto HL; Lombardini C
    Eur J Nutr; 2024 Apr; ():. PubMed ID: 38584247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Objective Optimization of Nutritional, Environmental and Economic Aspects of Diets Applied to the Spanish Context.
    Abejón R; Batlle-Bayer L; Laso J; Bala A; Vazquez-Rowe I; Larrea-Gallegos G; Margallo M; Cristobal J; Puig R; Fullana-I-Palmer P; Aldaco R
    Foods; 2020 Nov; 9(11):. PubMed ID: 33207725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Human Diets and Welfare through Using Herbivore-Based Foods: 2. Environmental Consequences and Mitigations.
    Caradus JR; Chapman DF; Rowarth JS
    Animals (Basel); 2024 Apr; 14(9):. PubMed ID: 38731357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meat substitutes: Resource demands and environmental footprints.
    Smetana S; Ristic D; Pleissner D; Tuomisto HL; Parniakov O; Heinz V
    Resour Conserv Recycl; 2023 Mar; 190():106831. PubMed ID: 36874227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population.
    Grummon AH; Lee CJY; Robinson TN; Rimm EB; Rose D
    Nat Food; 2023 Nov; 4(11):966-977. PubMed ID: 37884673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of the U.S. agrifood sector's contribution to human and planetary health: a case study.
    Dietz WH; Fanzo J
    Front Nutr; 2023; 10():1297214. PubMed ID: 38035359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impact of Norwegian self-selected diets: comparing current intake with national dietary guidelines and EAT-Lancet targets.
    Lengle JM; Michaelsen Bjøntegaard M; Hauger Carlsen M; Jafarzadeh S; Frost Andersen L
    Public Health Nutr; 2024 Mar; 27(1):e100. PubMed ID: 38523532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food purchase behaviour in a Finnish population: patterns, carbon footprints and expenditures.
    Meinilä J; Hartikainen H; Tuomisto HL; Uusitalo L; Vepsäläinen H; Saarinen M; Kinnunen S; Lehto E; Saarijärvi H; Katajajuuri JM; Erkkola M; Nevalainen J; Fogelholm M
    Public Health Nutr; 2022 Nov; 25(11):3265-3277. PubMed ID: 35979803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases.
    Trolle E; Nordman M; Lassen AD; Colley TA; Mogensen L
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary Patterns at the Individual Level through a Nutritional and Environmental Approach: The Case Study of a School Canteen.
    Peano C; Girgenti V; Sciascia S; Barone E; Sottile F
    Foods; 2022 Mar; 11(7):. PubMed ID: 35407095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing Food Consumption and Nutrition Intake in Kazakhstan.
    Jia M; Zhen L; Xiao Y
    Nutrients; 2022 Jan; 14(2):. PubMed ID: 35057506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental Impact of Meals: How Big Is the Carbon Footprint in the School Canteens?
    Volanti M; Arfelli F; Neri E; Saliani A; Passarini F; Vassura I; Cristallo G
    Foods; 2022 Jan; 11(2):. PubMed ID: 35053926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.