BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32854616)

  • 1. Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches.
    Kazerouni F; Bayani A; Asadi F; Saeidi L; Parvizi N; Mansoori Z
    BMC Bioinformatics; 2020 Aug; 21(1):372. PubMed ID: 32854616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus.
    Saeidi L; Ghaedi H; Sadatamini M; Vahabpour R; Rahimipour A; Shanaki M; Mansoori Z; Kazerouni F
    Mol Biol Rep; 2018 Dec; 45(6):2601-2608. PubMed ID: 30328000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort.
    Mansoori Z; Ghaedi H; Sadatamini M; Vahabpour R; Rahimipour A; Shanaki M; Saeidi L; Kazerouni F
    Mol Biol Rep; 2018 Oct; 45(5):1227-1233. PubMed ID: 30043104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting coronary artery disease: a comparison between two data mining algorithms.
    Ayatollahi H; Gholamhosseini L; Salehi M
    BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study.
    Zhang L; Wang Y; Niu M; Wang C; Wang Z
    Sci Rep; 2020 Mar; 10(1):4406. PubMed ID: 32157171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features.
    Zhang X; Wang J; Li J; Chen W; Liu C
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):120. PubMed ID: 30598114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning algorithms in screening for type 2 diabetes mellitus: Data from Fasa Adults Cohort Study.
    Karmand H; Andishgar A; Tabrizi R; Sadeghi A; Pezeshki B; Ravankhah M; Taherifard E; Ahmadizar F
    Endocrinol Diabetes Metab; 2024 Mar; 7(2):e00472. PubMed ID: 38411386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches.
    Ganie SM; Malik MB; Arif T
    J Diabetes Metab Disord; 2022 Jun; 21(1):339-352. PubMed ID: 35673418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
    Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH
    Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reliable method for colorectal cancer prediction based on feature selection and support vector machine.
    Zhao D; Liu H; Zheng Y; He Y; Lu D; Lyu C
    Med Biol Eng Comput; 2019 Apr; 57(4):901-912. PubMed ID: 30478811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk Assessment of Sarcopenia in Patients With Type 2 Diabetes Mellitus Using Data Mining Methods.
    Cui M; Gang X; Gao F; Wang G; Xiao X; Li Z; Li X; Ning G; Wang G
    Front Endocrinol (Lausanne); 2020; 11():123. PubMed ID: 32210921
    [No Abstract]   [Full Text] [Related]  

  • 16. Performance Comparison of Machine Learning Approaches on Hepatitis C Prediction Employing Data Mining Techniques.
    Alizargar A; Chang YL; Tan TH
    Bioengineering (Basel); 2023 Apr; 10(4):. PubMed ID: 37106668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Type 2 Diabetes Mellitus Phenotyping Framework Using Expert Knowledge and Machine Learning Approach.
    Kagawa R; Kawazoe Y; Ida Y; Shinohara E; Tanaka K; Imai T; Ohe K
    J Diabetes Sci Technol; 2017 Jul; 11(4):791-799. PubMed ID: 27932531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Three Data Mining Algorithms for Identifying the Associated Risk Factors of Type 2 Diabetes.
    Esmaeily H; Tayefi M; Ghayour-Mobarhan M; Amirabadizadeh A
    Iran Biomed J; 2018 Sep; 22(5):303-11. PubMed ID: 29374085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free long non-coding RNAs (LY86-AS1 & HCG27_201and GAS5) as biomarkers for pre-diabetes and type 2 DM in Egypt.
    Saleh AA; Kasem HE; Zahran ES; El-Hefnawy SM
    Biochem Biophys Rep; 2020 Sep; 23():100770. PubMed ID: 32514472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms.
    Amaral JL; Lopes AJ; Jansen JM; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2013 Dec; 112(3):441-54. PubMed ID: 24001924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.