These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32854822)

  • 1. Reducing postural load in order picking through a smart workwear system using real-time vibrotactile feedback.
    Lind CM; Yang L; Abtahi F; Hanson L; Lindecrantz K; Lu K; Forsman M; Eklund J
    Appl Ergon; 2020 Nov; 89():103188. PubMed ID: 32854822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness and usability of real-time vibrotactile feedback training to reduce postural exposure in real manual sorting work.
    Lind CM; De Clercq B; Forsman M; Grootaers A; Verbrugghe M; Van Dyck L; Yang L
    Ergonomics; 2023 Feb; 66(2):198-216. PubMed ID: 35466852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable Sensor System for Physical Ergonomics Interventions Using Haptic Feedback.
    Lind CM; Diaz-Olivares JA; Lindecrantz K; Eklund J
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparisons of physical exposure between workers harvesting apples on mobile orchard platforms and ladders, part 1: Back and upper arm postures.
    Thamsuwan O; Galvin K; Tchong-French M; Aulck L; Boyle LN; Ching RP; McQuade KJ; Johnson PW
    Appl Ergon; 2020 Nov; 89():103193. PubMed ID: 32771690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Shift Trunk and Upper Arm Postures and Movements Among Aircraft Baggage Handlers.
    Wahlström J; Bergsten E; Trask C; Mathiassen SE; Jackson J; Forsman M
    Ann Occup Hyg; 2016 Oct; 60(8):977-90. PubMed ID: 27417186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Directly Measured Trunk and Upper Arm Postures in Paper Mill Work From Administrative Data, Workers' Ratings and Posture Observations.
    Heiden M; Garza J; Trask C; Mathiassen SE
    Ann Work Expo Health; 2017 Mar; 61(2):207-217. PubMed ID: 28395353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach.
    Conforti I; Mileti I; Del Prete Z; Palermo E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Corrective and Encouraging Accumulated Vibrotactile Feedback on Work Technique Training and Motivation-A Pilot Study.
    Langenskiöld C; Berg A; Yang L
    Int J Environ Res Public Health; 2023 Sep; 20(18):. PubMed ID: 37754601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of In-Cloth versus On-Skin Sensors for Measuring Trunk and Upper Arm Postures and Movements.
    Hoareau D; Fan X; Abtahi F; Yang L
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time vibrotactile feedback system for reducing trunk flexion exposure during construction tasks.
    Lim S; Yang X
    Appl Ergon; 2023 Jul; 110():104019. PubMed ID: 36948048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.
    Xu J; Bao T; Lee UH; Kinnaird C; Carender W; Huang Y; Sienko KH; Shull PB
    J Neuroeng Rehabil; 2017 Oct; 14(1):102. PubMed ID: 29020959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of visual and vibrotactile feedback methods for seated posture guidance.
    Zheng YJ; Morrell JB
    IEEE Trans Haptics; 2013; 6(1):13-23. PubMed ID: 24808264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrotactile feedback for correcting aerodynamic position of a cyclist.
    Peeters T; Vleugels J; Garimella R; Truijen S; Saeys W; Verwulgen S
    J Sports Sci; 2020 Oct; 38(19):2193-2199. PubMed ID: 32529942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the potential for "undesired" effects of passive back-support exoskeleton use during a simulated manual assembly task: Muscle activity, posture, balance, discomfort, and usability.
    Kim S; Madinei S; Alemi MM; Srinivasan D; Nussbaum MA
    Appl Ergon; 2020 Nov; 89():103194. PubMed ID: 32854824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGB-D ergonomic assessment system of adopted working postures.
    Abobakr A; Nahavandi D; Hossny M; Iskander J; Attia M; Nahavandi S; Smets M
    Appl Ergon; 2019 Oct; 80():75-88. PubMed ID: 31280813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative postural load assessment for whole body manual tasks based on perceived discomfort.
    Chung MK; Lee I; Kee D
    Ergonomics; 2005 Apr; 48(5):492-505. PubMed ID: 16040522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparative analysis of postural and biomechanical parameters of preschool teachers pre- and post-intervention within the ErgoKiTa study.
    Burford EM; Ellegast R; Weber B; Brehmen M; Groneberg D; Sinn-Behrendt A; Bruder R
    Ergonomics; 2017 Dec; 60(12):1718-1729. PubMed ID: 28629265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ergonomic intervention to relieve musculoskeletal symptoms of assembly line workers at an electronic parts manufacturer in Iran.
    Daneshmandi H; Kee D; Kamalinia M; Oliaei M; Mohammadi H
    Work; 2018; 61(4):515-521. PubMed ID: 30475781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of body postures using smart workwear.
    Lins C; Hein A
    BMC Musculoskelet Disord; 2022 Oct; 23(1):921. PubMed ID: 36258225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.