These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32854955)

  • 1. Modified canonical variate analysis based on dynamic kernel decomposition for dynamic nonlinear process quality monitoring.
    Zhang MQ; Luo XL
    ISA Trans; 2021 Feb; 108():106-120. PubMed ID: 32854955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Dynamic Process Monitoring Based on Ensemble Kernel Canonical Variate Analysis and Bayesian Inference.
    Wang X; Wu P
    ACS Omega; 2022 Jun; 7(22):18904-18921. PubMed ID: 35694473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonlinear quality-related fault detection approach based on modified kernel partial least squares.
    Jiao J; Zhao N; Wang G; Yin S
    ISA Trans; 2017 Jan; 66():275-283. PubMed ID: 27817839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality-Relevant Process Monitoring with Concurrent Locality-Preserving Dynamic Latent Variable Method.
    Zhang Q; Lu S; Xie L; Chen Q; Su H
    ACS Omega; 2022 Aug; 7(31):27249-27262. PubMed ID: 35967037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis.
    Cai L; Tian X; Chen S
    IEEE Trans Neural Netw Learn Syst; 2017 Jan; 28(1):122-135. PubMed ID: 26685274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality monitoring method based on enhanced canonical component analysis.
    Yang J; Dong J; Shi H; Tan S
    ISA Trans; 2020 Oct; 105():221-229. PubMed ID: 32624172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring.
    Deng X; Wang L
    ISA Trans; 2018 Jan; 72():218-228. PubMed ID: 29017769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.
    Zhang H; Tian X; Deng X; Cao Y
    ISA Trans; 2018 Aug; 79():108-126. PubMed ID: 29776590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kernel-based PMP structure for nonlinear industrial quality-related process monitoring.
    Ma H; Wang Y; Chen H; Yuan J; Ji Z
    ISA Trans; 2023 Oct; 141():184-196. PubMed ID: 37474433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
    Deng X; Tian X; Chen S; Harris CJ
    IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):560-572. PubMed ID: 28026785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KPLS-KSER based approach for quality-related monitoring of nonlinear process.
    Jiao J; Zhen W; Wang G; Wang Y
    ISA Trans; 2021 Feb; 108():144-153. PubMed ID: 32981684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning.
    Li Z; Yan X
    ISA Trans; 2019 Dec; 95():68-81. PubMed ID: 31151751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data.
    Yoshida K; Yoshimoto J; Doya K
    BMC Bioinformatics; 2017 Feb; 18(1):108. PubMed ID: 28196464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring.
    Jaffel I; Taouali O; Harkat MF; Messaoud H
    ISA Trans; 2016 Sep; 64():184-192. PubMed ID: 27342996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Iterative Dynamic Kernel Principal Component Analysis Monitoring Method for the Batch Process with Super-large-scale Data Sets.
    Wang Y; Yu H; Li X
    ACS Omega; 2021 Apr; 6(15):9989-9997. PubMed ID: 34056154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis.
    Li C; Zhou Z; Wen C; Li Z
    ACS Omega; 2022 Mar; 7(8):6978-6990. PubMed ID: 35252689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LSTMED: An uneven dynamic process monitoring method based on LSTM and Autoencoder neural network.
    Deng W; Li Y; Huang K; Wu D; Yang C; Gui W
    Neural Netw; 2023 Jan; 158():30-41. PubMed ID: 36442372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incipient Fault Detection in a Hydraulic System Using Canonical Variable Analysis Combined with Adaptive Kernel Density Estimation.
    Wang J; Zhao S; Wang E; Zhao J; Liu X; Li Z
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel dynamic enhanced robust principal subspace discriminant analysis for high-dimensional process fault diagnosis with industrial applications.
    Zhang MQ; Luo XL
    ISA Trans; 2021 Aug; 114():1-14. PubMed ID: 33388145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition of nonlinear non-Gaussian process and its application to nonlinear filter and predictor design.
    Shi J; Sun HH
    Ann Biomed Eng; 1991; 19(4):457-72. PubMed ID: 1741526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.