These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32855341)

  • 1. Expanding the space of protein geometries by computational design of de novo fold families.
    Pan X; Thompson MC; Zhang Y; Liu L; Fraser JS; Kelly MJS; Kortemme T
    Science; 2020 Aug; 369(6507):1132-1136. PubMed ID: 32855341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo protein fold families expand the designable ligand binding site space.
    Pan X; Kortemme T
    PLoS Comput Biol; 2021 Nov; 17(11):e1009620. PubMed ID: 34807909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control over overall shape and size in de novo designed proteins.
    Lin YR; Koga N; Tatsumi-Koga R; Liu G; Clouser AF; Montelione GT; Baker D
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5478-85. PubMed ID: 26396255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic framework for hierarchical de novo protein design.
    Harteveld Z; Bonet J; Rosset S; Yang C; Sesterhenn F; Correia BE
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2206111119. PubMed ID: 36252041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo protein fold design through sequence-independent fragment assembly simulations.
    Pearce R; Huang X; Omenn GS; Zhang Y
    Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2208275120. PubMed ID: 36656852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in computational protein design.
    Park S; Yang X; Saven JG
    Curr Opin Struct Biol; 2004 Aug; 14(4):487-94. PubMed ID: 15313244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of structurally distinct proteins using strategies inspired by evolution.
    Jacobs TM; Williams B; Williams T; Xu X; Eletsky A; Federizon JF; Szyperski T; Kuhlman B
    Science; 2016 May; 352(6286):687-90. PubMed ID: 27151863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling of structure and sequence space of small protein folds.
    Linsky TW; Noble K; Tobin AR; Crow R; Carter L; Urbauer JL; Baker D; Strauch EM
    Nat Commun; 2022 Nov; 13(1):7151. PubMed ID: 36418330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in design of protein folds and assemblies.
    Ljubetič A; Gradišar H; Jerala R
    Curr Opin Chem Biol; 2017 Oct; 40():65-71. PubMed ID: 28709120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise assembly of complex beta sheet topologies from de novo designed building blocks.
    King IC; Gleixner J; Doyle L; Kuzin A; Hunt JF; Xiao R; Montelione GT; Stoddard BL; DiMaio F; Baker D
    Elife; 2015 Dec; 4():. PubMed ID: 26650357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of a de novo protein from a designed combinatorial library.
    Wei Y; Kim S; Fela D; Baum J; Hecht MH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13270-3. PubMed ID: 14593201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo design of self-assembling helical protein filaments.
    Shen H; Fallas JA; Lynch E; Sheffler W; Parry B; Jannetty N; Decarreau J; Wagenbach M; Vicente JJ; Chen J; Wang L; Dowling Q; Oberdorfer G; Stewart L; Wordeman L; De Yoreo J; Jacobs-Wagner C; Kollman J; Baker D
    Science; 2018 Nov; 362(6415):705-709. PubMed ID: 30409885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stably folded de novo proteins from a designed combinatorial library.
    Wei Y; Liu T; Sazinsky SL; Moffet DA; Pelczer I; Hecht MH
    Protein Sci; 2003 Jan; 12(1):92-102. PubMed ID: 12493832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo proteins from binary-patterned combinatorial libraries.
    Bradley LH; Thumfort PP; Hecht MH
    Methods Mol Biol; 2006; 340():53-69. PubMed ID: 16957332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enumerative algorithm for de novo design of proteins with diverse pocket structures.
    Basanta B; Bick MJ; Bera AK; Norn C; Chow CM; Carter LP; Goreshnik I; Dimaio F; Baker D
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22135-22145. PubMed ID: 32839327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of complicated all-α protein structures.
    Sakuma K; Kobayashi N; Sugiki T; Nagashima T; Fujiwara T; Suzuki K; Kobayashi N; Murata T; Kosugi T; Tatsumi-Koga R; Koga N
    Nat Struct Mol Biol; 2024 Feb; 31(2):275-282. PubMed ID: 38177681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the repeat protein universe through computational protein design.
    Brunette TJ; Parmeggiani F; Huang PS; Bhabha G; Ekiert DC; Tsutakawa SE; Hura GL; Tainer JA; Baker D
    Nature; 2015 Dec; 528(7583):580-4. PubMed ID: 26675729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs.
    Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.