These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32855341)

  • 21. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversifying de novo TIM barrels by hallucination.
    Beck J; Shanmugaratnam S; Höcker B
    Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring folding free energy landscapes using computational protein design.
    Kuhlman B; Baker D
    Curr Opin Struct Biol; 2004 Feb; 14(1):89-95. PubMed ID: 15102454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo proteins from designed combinatorial libraries.
    Hecht MH; Das A; Go A; Bradley LH; Wei Y
    Protein Sci; 2004 Jul; 13(7):1711-23. PubMed ID: 15215517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo protein design by inversion of the AlphaFold structure prediction network.
    Goverde CA; Wolf B; Khakzad H; Rosset S; Correia BE
    Protein Sci; 2023 Jun; 32(6):e4653. PubMed ID: 37165539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of catalytic polypeptides and proteins.
    Gutte B; Klauser S
    Protein Eng Des Sel; 2018 Dec; 31(12):457-470. PubMed ID: 31241746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteins from an unevolved library of de novo designed sequences bind a range of small molecules.
    Cherny I; Korolev M; Koehler AN; Hecht MH
    ACS Synth Biol; 2012 Apr; 1(4):130-8. PubMed ID: 23651114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward high-resolution computational design of the structure and function of helical membrane proteins.
    Barth P; Senes A
    Nat Struct Mol Biol; 2016 Jun; 23(6):475-80. PubMed ID: 27273630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo protein design by citizen scientists.
    Koepnick B; Flatten J; Husain T; Ford A; Silva DA; Bick MJ; Bauer A; Liu G; Ishida Y; Boykov A; Estep RD; Kleinfelter S; Nørgård-Solano T; Wei L; Players F; Montelione GT; DiMaio F; Popović Z; Khatib F; Cooper S; Baker D
    Nature; 2019 Jun; 570(7761):390-394. PubMed ID: 31168091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo design of native proteins: characterization of proteins intended to fold into antiparallel, rop-like, four-helix bundles.
    Betz SF; Liebman PA; DeGrado WF
    Biochemistry; 1997 Mar; 36(9):2450-8. PubMed ID: 9054549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sculpting conducting nanopore size and shape through de novo protein design.
    Berhanu S; Majumder S; Müntener T; Whitehouse J; Berner C; Bera AK; Kang A; Liang B; Khan N; Sankaran B; Tamm LK; Brockwell DJ; Hiller S; Radford SE; Baker D; Vorobieva AA
    Science; 2024 Jul; 385(6706):282-288. PubMed ID: 39024453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extending the concept of template-assembled synthetic proteins.
    Tuchscherer G; Grell D; Mathieu M; Mutter M
    J Pept Res; 1999 Sep; 54(3):185-94. PubMed ID: 10517155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo design: backbone conformational constraints in nucleating helices and beta-hairpins.
    Balaram P
    J Pept Res; 1999 Sep; 54(3):195-9. PubMed ID: 10517156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical and computational protein design.
    Samish I; MacDermaid CM; Perez-Aguilar JM; Saven JG
    Annu Rev Phys Chem; 2011; 62():129-49. PubMed ID: 21128762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transferable coarse-grained potential for de novo protein folding and design.
    Coluzza I
    PLoS One; 2014; 9(12):e112852. PubMed ID: 25436908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational design of soluble and functional membrane protein analogues.
    Goverde CA; Pacesa M; Goldbach N; Dornfeld LJ; Balbi PEM; Georgeon S; Rosset S; Kapoor S; Choudhury J; Dauparas J; Schellhaas C; Kozlov S; Baker D; Ovchinnikov S; Vecchio AJ; Correia BE
    Nature; 2024 Jul; 631(8020):449-458. PubMed ID: 38898281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.