These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32855341)

  • 41. New strategies in protein design.
    Desjarlais JR; Handel TM
    Curr Opin Biotechnol; 1995 Aug; 6(4):460-6. PubMed ID: 7579657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Templates in protein de novo design.
    Tuchscherer G; Mutter M
    J Biotechnol; 1995 Jul; 41(2-3):197-210. PubMed ID: 7654350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo design of transmembrane helix-helix interactions and measurement of stability in a biological membrane.
    Nash A; Notman R; Dixon AM
    Biochim Biophys Acta; 2015 May; 1848(5):1248-57. PubMed ID: 25732028
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CASP10-BCL::Fold efficiently samples topologies of large proteins.
    Heinze S; Putnam DK; Fischer AW; Kohlmann T; Weiner BE; Meiler J
    Proteins; 2015 Mar; 83(3):547-63. PubMed ID: 25581562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A designed branched three-helix bundle protein dimer.
    Dolphin GT
    J Am Chem Soc; 2006 Jun; 128(22):7287-90. PubMed ID: 16734482
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.
    Dolphin GT; Baltzer L
    Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A protein sequence fitness function for identifying natural and nonnatural proteins.
    Kaushik R; Zhang KYJ
    Proteins; 2020 Oct; 88(10):1271-1284. PubMed ID: 32415863
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability.
    Xiong P; Wang M; Zhou X; Zhang T; Zhang J; Chen Q; Liu H
    Nat Commun; 2014 Oct; 5():5330. PubMed ID: 25345468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The structural landscape of the immunoglobulin fold by large-scale de novo design.
    Roel-Touris J; Carcelén L; Marcos E
    Protein Sci; 2024 Apr; 33(4):e4936. PubMed ID: 38501461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction of proteins with molecular recognition capabilities using α3β3 de novo protein scaffolds.
    Okura H; Mihara H; Takahashi T
    Protein Eng Des Sel; 2013 Oct; 26(10):705-11. PubMed ID: 24046439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and designability of protein-based assemblies.
    Zhang J; Zheng F; Grigoryan G
    Curr Opin Struct Biol; 2014 Aug; 27():79-86. PubMed ID: 24952313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.
    Yeh CT; Brunette TJ; Baker D; McIntosh-Smith S; Parmeggiani F
    J Struct Biol; 2018 Feb; 201(2):100-107. PubMed ID: 28890160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping side chain interactions at protein helix termini.
    Newell NE
    BMC Bioinformatics; 2015 Jul; 16():231. PubMed ID: 26209176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progress in computational protein design.
    Lippow SM; Tidor B
    Curr Opin Biotechnol; 2007 Aug; 18(4):305-11. PubMed ID: 17644370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A; Soberón X; Sánchez F; Argüello M; Montero-Morán G; Saab-Rincón G
    J Mol Biol; 2009 Apr; 387(4):949-64. PubMed ID: 19233201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. De novo protein design. I. In search of stability and specificity.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Designing proteins from the inside out.
    Ventura S; Serrano L
    Proteins; 2004 Jul; 56(1):1-10. PubMed ID: 15162481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein sequence design with a learned potential.
    Anand N; Eguchi R; Mathews II; Perez CP; Derry A; Altman RB; Huang PS
    Nat Commun; 2022 Feb; 13(1):746. PubMed ID: 35136054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.