These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32855341)

  • 61. Structural determinants of transmembrane helical proteins.
    Harrington SE; Ben-Tal N
    Structure; 2009 Aug; 17(8):1092-103. PubMed ID: 19679087
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Design of protein structures: helix bundles and beyond.
    Sander C
    Trends Biotechnol; 1994 May; 12(5):163-7. PubMed ID: 7764898
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Terminal sequence importance of de novo proteins from binary-patterned library: stable artificial proteins with 11- or 12-amino acid alphabet.
    Okura H; Takahashi T; Mihara H
    Protein Pept Lett; 2012 Jun; 19(6):673-9. PubMed ID: 22519540
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Automated design evolution of stereochemically randomized protein foldamers.
    Ranbhor R; Kumar A; Patel K; Ramakrishnan V; Durani S
    Phys Biol; 2018 Mar; 15(3):036001. PubMed ID: 29393061
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Principles for designing proteins with cavities formed by curved β sheets.
    Marcos E; Basanta B; Chidyausiku TM; Tang Y; Oberdorfer G; Liu G; Swapna GV; Guan R; Silva DA; Dou J; Pereira JH; Xiao R; Sankaran B; Zwart PH; Montelione GT; Baker D
    Science; 2017 Jan; 355(6321):201-206. PubMed ID: 28082595
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Designing Covalently Linked Heterodimeric Four-Helix Bundles.
    Chino M; Leone L; Maglio O; Lombardi A
    Methods Enzymol; 2016; 580():471-99. PubMed ID: 27586346
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electron transfer activity of a de novo designed copper center in a three-helix bundle fold.
    Plegaria JS; Herrero C; Quaranta A; Pecoraro VL
    Biochim Biophys Acta; 2016 May; 1857(5):522-530. PubMed ID: 26427552
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Energy estimation in protein design.
    Mendes J; Guerois R; Serrano L
    Curr Opin Struct Biol; 2002 Aug; 12(4):441-6. PubMed ID: 12163065
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Directed evolution of the peroxidase activity of a de novo-designed protein.
    Patel SC; Hecht MH
    Protein Eng Des Sel; 2012 Sep; 25(9):445-52. PubMed ID: 22665824
    [TBL] [Abstract][Full Text] [Related]  

  • 70. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PLUG (Pruning of Local Unrealistic Geometries) removes restrictions on biophysical modeling for protein design.
    Hallen MA
    Proteins; 2019 Jan; 87(1):62-73. PubMed ID: 30378699
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tertiary templates for the design of diiron proteins.
    Summa CM; Lombardi A; Lewis M; DeGrado WF
    Curr Opin Struct Biol; 1999 Aug; 9(4):500-8. PubMed ID: 10449377
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein design by binary patterning of polar and nonpolar amino acids.
    Kamtekar S; Schiffer JM; Xiong H; Babik JM; Hecht MH
    Science; 1993 Dec; 262(5140):1680-5. PubMed ID: 8259512
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computational de novo design, and characterization of an A(2)B(2) diiron protein.
    Summa CM; Rosenblatt MM; Hong JK; Lear JD; DeGrado WF
    J Mol Biol; 2002 Aug; 321(5):923-38. PubMed ID: 12206771
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Current updates on computer aided protein modeling and designing.
    Khan FI; Wei DQ; Gu KR; Hassan MI; Tabrez S
    Int J Biol Macromol; 2016 Apr; 85():48-62. PubMed ID: 26730484
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Novel proteins: from fold to function.
    Smith BA; Hecht MH
    Curr Opin Chem Biol; 2011 Jun; 15(3):421-6. PubMed ID: 21474363
    [TBL] [Abstract][Full Text] [Related]  

  • 78. De novo design of helical bundles as models for understanding protein folding and function.
    Hill RB; Raleigh DP; Lombardi A; DeGrado WF
    Acc Chem Res; 2000 Nov; 33(11):745-54. PubMed ID: 11087311
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Defining scaffold geometries for interacting with proteins: geometrical classification of secondary structure linking regions.
    Tran TT; Kulis C; Long SM; Bryant D; Adams P; Smythe ML
    J Comput Aided Mol Des; 2010 Nov; 24(11):917-34. PubMed ID: 20862601
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The designability of protein structures.
    Helling R; Li H; Mélin R; Miller J; Wingreen N; Zeng C; Tang C
    J Mol Graph Model; 2001; 19(1):157-67. PubMed ID: 11381527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.