BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 32855387)

  • 1. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action.
    McFarland JM; Paolella BR; Warren A; Geiger-Schuller K; Shibue T; Rothberg M; Kuksenko O; Colgan WN; Jones A; Chambers E; Dionne D; Bender S; Wolpin BM; Ghandi M; Tirosh I; Rozenblatt-Rosen O; Roth JA; Golub TR; Regev A; Aguirre AJ; Vazquez F; Tsherniak A
    Nat Commun; 2020 Aug; 11(1):4296. PubMed ID: 32855387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq.
    Zhao W; Dovas A; Spinazzi EF; Levitin HM; Banu MA; Upadhyayula P; Sudhakar T; Marie T; Otten ML; Sisti MB; Bruce JN; Canoll P; Sims PA
    Genome Med; 2021 May; 13(1):82. PubMed ID: 33975634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and multiplexed chemical-genetic phenotyping in mammalian cells with QMAP-Seq.
    Brockway S; Wang G; Jackson JM; Amici DR; Takagishi SR; Clutter MR; Bartom ET; Mendillo ML
    Nat Commun; 2020 Nov; 11(1):5722. PubMed ID: 33184288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage.
    Poirion O; Zhu X; Ching T; Garmire LX
    Nat Commun; 2018 Nov; 9(1):4892. PubMed ID: 30459309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.
    Wang R; Jin C; Hu X
    Oncotarget; 2017 Jun; 8(25):41113-41124. PubMed ID: 28467802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells.
    Gautam P; Karhinen L; Szwajda A; Jha SK; Yadav B; Aittokallio T; Wennerberg K
    Mol Cancer; 2016 May; 15(1):34. PubMed ID: 27165605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212.
    Jing J; Greshock J; Holbrook JD; Gilmartin A; Zhang X; McNeil E; Conway T; Moy C; Laquerre S; Bachman K; Wooster R; Degenhardt Y
    Mol Cancer Ther; 2012 Mar; 11(3):720-9. PubMed ID: 22169769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Sequencing of the NCI-60: Integration into CellMiner and CellMiner CDB.
    Reinhold WC; Varma S; Sunshine M; Elloumi F; Ofori-Atta K; Lee S; Trepel JB; Meltzer PS; Doroshow JH; Pommier Y
    Cancer Res; 2019 Jul; 79(13):3514-3524. PubMed ID: 31113817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research.
    Song Q; Liu L
    Methods Mol Biol; 2022; 2413():245-255. PubMed ID: 35044670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning single-cell perturbation responses using neural optimal transport.
    Bunne C; Stark SG; Gut G; Del Castillo JS; Levesque M; Lehmann KV; Pelkmans L; Krause A; Rätsch G
    Nat Methods; 2023 Nov; 20(11):1759-1768. PubMed ID: 37770709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.
    Levitin HM; Yuan J; Sims PA
    Trends Cancer; 2018 Apr; 4(4):264-268. PubMed ID: 29606308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scDR: Predicting Drug Response at Single-Cell Resolution.
    Lei W; Yuan M; Long M; Zhang T; Huang YE; Liu H; Jiang W
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell RNA Sequencing in Cancer: Lessons Learned and Emerging Challenges.
    Suvà ML; Tirosh I
    Mol Cell; 2019 Jul; 75(1):7-12. PubMed ID: 31299208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell RNA Sequencing for Studying Human Cancers.
    Aran D
    Annu Rev Biomed Data Sci; 2023 Aug; 6():1-22. PubMed ID: 37040737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.
    Lee H; Kang S; Kim W
    PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.