These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32855412)

  • 1. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro.
    Lee J; Schwarz KJ; Kim DS; Moore JS; Jewett MC
    Nat Commun; 2020 Aug; 11(1):4304. PubMed ID: 32855412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outwitting EF-Tu and the ribosome: translation with d-amino acids.
    Achenbach J; Jahnz M; Bethge L; Paal K; Jung M; Schuster M; Albrecht R; Jarosch F; Nierhaus KH; Klussmann S
    Nucleic Acids Res; 2015 Jul; 43(12):5687-98. PubMed ID: 26026160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the limits of the second genetic code with ribozymes.
    Lee J; Schwieter KE; Watkins AM; Kim DS; Yu H; Schwarz KJ; Lim J; Coronado J; Byrom M; Anslyn EV; Ellington AD; Moore JS; Jewett MC
    Nat Commun; 2019 Nov; 10(1):5097. PubMed ID: 31704912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosome-mediated biosynthesis of pyridazinone oligomers in vitro.
    Lee J; Coronado JN; Cho N; Lim J; Hosford BM; Seo S; Kim DS; Kofman C; Moore JS; Ellington AD; Anslyn EV; Jewett MC
    Nat Commun; 2022 Oct; 13(1):6322. PubMed ID: 36280685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.
    Sigal M; Matsumoto S; Beattie A; Katoh T; Suga H
    Chem Rev; 2024 May; 124(10):6444-6500. PubMed ID: 38688034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tRNA engineering for manipulating genetic code.
    Katoh T; Iwane Y; Suga H
    RNA Biol; 2018; 15(4-5):453-460. PubMed ID: 28722545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular synthesis in Streptomyces antibioticus: in vitro systems for aminoacylation and translation from young and old cells.
    Jones GH
    J Bacteriol; 1975 Oct; 124(1):364-72. PubMed ID: 51847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome.
    Forster AC
    Nucleic Acids Res; 2009 Jun; 37(11):3747-55. PubMed ID: 19376831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the aminoacylation of selected tRNA molecules by an estrogen-regulated factor on uterine ribosomes. Regulation of aminoacylation of tRNA by estrogens.
    Whelly SM; Barker KL
    Eur J Biochem; 1985 Jan; 146(2):245-53. PubMed ID: 3967659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code.
    Katoh T; Suga H
    J Am Chem Soc; 2020 Mar; 142(11):4965-4969. PubMed ID: 32129615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of transfer RNA during peptide chain elongation.
    Lucas-Lenard J; Haenni AL
    Proc Natl Acad Sci U S A; 1969 May; 63(1):93-7. PubMed ID: 4897025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosome run through of the termination codon in the absence of the ribosome releasing factor.
    Ogawa K; Kaji A
    Biochim Biophys Acta; 1975 Sep; 402(3):288-96. PubMed ID: 1100117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.
    Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex.
    Skoultchi A; Ono Y; Waterson J; Lengyel P
    Biochemistry; 1970 Feb; 9(3):508-14. PubMed ID: 4906323
    [No Abstract]   [Full Text] [Related]  

  • 16. Noncanonical inputs and outputs of tRNA aminoacylation.
    Hemmerle M; Wendenbaum M; Grob G; Yakobov N; Mahmoudi N; Senger B; Debard S; Fischer F; Becker HD
    Enzymes; 2020; 48():117-147. PubMed ID: 33837702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of synthetic tRNAs as probes for examining nascent peptides on Escherichia coli ribosomes.
    Picking W; Picking WD; Hardesty B
    Biochimie; 1991; 73(7-8):1101-7. PubMed ID: 1742354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of the 3' terminus of 2'-O-aminoacyl transfer ribonucleic acid by the acceptor site of ribosomal peptidyltransferase.
    Ringer D; Quiggle K; Chládek S
    Biochemistry; 1975 Feb; 14(3):514-20. PubMed ID: 1089429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of biopolymers using genetic code reprogramming.
    Ohta A; Yamagishi Y; Suga H
    Curr Opin Chem Biol; 2008 Apr; 12(2):159-67. PubMed ID: 18249198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.