BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32855419)

  • 21. Chromatin determinants of the inner-centromere rely on replication factors with functions that impart cohesion.
    Abe T; Kawasumi R; Arakawa H; Hori T; Shirahige K; Losada A; Fukagawa T; Branzei D
    Oncotarget; 2016 Oct; 7(42):67934-67947. PubMed ID: 27636994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation.
    Simon AK; Kummer S; Wild S; Lezaja A; Teloni F; Jozwiakowski SK; Altmeyer M; Gari K
    Life Sci Alliance; 2020 Mar; 3(3):. PubMed ID: 32071282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA helicases FANCM and DDX11 are determinants of PARP inhibitor sensitivity.
    Stoepker C; Faramarz A; Rooimans MA; van Mil SE; Balk JA; Velleuer E; Ameziane N; Te Riele H; de Winter JP
    DNA Repair (Amst); 2015 Feb; 26():54-64. PubMed ID: 25583207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spotlight on Warsaw Breakage Syndrome.
    Pisani FM
    Appl Clin Genet; 2019; 12():239-248. PubMed ID: 31824187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia.
    Bottega R; Ravera S; Napolitano LMR; Chiappetta V; Zini N; Crescenzi B; Arniani S; Faleschini M; Cortone G; Faletra F; Medagli B; Sirchia F; Moretti M; de Lange J; Cappelli E; Mecucci C; Onesti S; Pisani FM; Savoia A
    J Cell Physiol; 2021 Aug; 236(8):5664-5675. PubMed ID: 33432587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Warsaw breakage syndrome: an etiology for congenital microcephaly and sensorineural deafness].
    Arroyo-Carrera I; Solo de Zaldívar-Tristancho M; García Navas-Núñez VD; Ramajo-Polo A; Gutiérrez-Agujetas M
    Rev Neurol; 2023 Feb; 76(3):111-115. PubMed ID: 36703504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Warsaw breakage syndrome DDX11 helicase acts jointly with RAD17 in the repair of bulky lesions and replication through abasic sites.
    Abe T; Ooka M; Kawasumi R; Miyata K; Takata M; Hirota K; Branzei D
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8412-8417. PubMed ID: 30061412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two further patients with Warsaw breakage syndrome. Is a mild phenotype possible?
    Bottega R; Napolitano LMR; Carbone A; Cappelli E; Corsolini F; Onesti S; Savoia A; Gasparini P; Faletra F
    Mol Genet Genomic Med; 2019 May; 7(5):e639. PubMed ID: 30924321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of ChlR1 DNA helicase in replication recovery from DNA damage.
    Shah N; Inoue A; Woo Lee S; Beishline K; Lahti JM; Noguchi E
    Exp Cell Res; 2013 Aug; 319(14):2244-53. PubMed ID: 23797032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae.
    Rudra S; Skibbens RV
    PLoS One; 2013; 8(9):e75435. PubMed ID: 24086532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and biochemical characterization of the G4 resolvase and DNA helicase FANCJ.
    Kulikowicz T; Sommers JA; Fuchs KF; Wu Y; Brosh RM
    Methods Enzymol; 2024; 695():1-27. PubMed ID: 38521581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation.
    Inoue A; Li T; Roby SK; Valentine MB; Inoue M; Boyd K; Kidd VJ; Lahti JM
    Cell Cycle; 2007 Jul; 6(13):1646-54. PubMed ID: 17611414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian ChlR1 has a role in heterochromatin organization.
    Inoue A; Hyle J; Lechner MS; Lahti JM
    Exp Cell Res; 2011 Oct; 317(17):2522-35. PubMed ID: 21854770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Warsaw breakage syndrome: Further clinical and genetic delineation.
    Alkhunaizi E; Shaheen R; Bharti SK; Joseph-George AM; Chong K; Abdel-Salam GMH; Alowain M; Blaser SI; Papsin BC; Butt M; Hashem M; Martin N; Godoy R; Brosh RM; Alkuraya FS; Chitayat D
    Am J Med Genet A; 2018 Nov; 176(11):2404-2418. PubMed ID: 30216658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells.
    Parish JL; Rosa J; Wang X; Lahti JM; Doxsey SJ; Androphy EJ
    J Cell Sci; 2006 Dec; 119(Pt 23):4857-65. PubMed ID: 17105772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function.
    de Lange J; Faramarz A; Oostra AB; de Menezes RX; van der Meulen IH; Rooimans MA; Rockx DA; Brakenhoff RH; van Beusechem VW; King RW; de Winter JP; Wolthuis RMF
    Nat Commun; 2015 Oct; 6():8399. PubMed ID: 26423134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Warsaw Breakage Syndrome--A further report, emphasising cutaneous findings.
    Bailey C; Fryer AE; Greenslade M
    Eur J Med Genet; 2015 Apr; 58(4):235-7. PubMed ID: 25701697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ENU-induced cetus mutation reveals an essential role of the DNA helicase DDX11 for mesoderm development during early mouse embryogenesis.
    Cota CD; García-García MJ
    Dev Dyn; 2012 Aug; 241(8):1249-59. PubMed ID: 22678773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting DDX11 promotes PARP inhibitor sensitivity in hepatocellular carcinoma by attenuating BRCA2-RAD51 mediated homologous recombination.
    Cao K; Wang R; Li L; Liao Y; Hu X; Li R; Liu X; Xiong XD; Wang Y; Liu X
    Oncogene; 2024 Jan; 43(1):35-46. PubMed ID: 38007537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Timeless Tale: G4 structure recognition by the fork protection complex triggers unwinding by DDX11 helicase.
    Freudenreich CH
    EMBO J; 2020 Sep; 39(18):e106305. PubMed ID: 32790898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.