These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32855570)

  • 1.
    Gerbig YB; Michaels CA
    J Non Cryst Solids; 2019; 530():. PubMed ID: 32855570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopic measurements and imaging on sub-newton Berkovich and spherical imprints in fused silica.
    Gerbig YB; Michaels CA
    J Non Cryst Solids; 2024 Feb; 626():. PubMed ID: 38314066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indentation device for in situ Raman spectroscopic and optical studies.
    Gerbig YB; Michaels CA; Forster AM; Hettenhouser JW; Byrd WE; Morris DJ; Cook RF
    Rev Sci Instrum; 2012 Dec; 83(12):125106. PubMed ID: 23278025
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Gerbig YB; Michaels CA; Bradby JE; Haberl B; Cook RF
    Phys Rev B Condens Matter Mater Phys; 2015 Dec; 92(21):. PubMed ID: 26924926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Indentation Load on the Raman Spectra of the InP Crystal.
    Chrobak D; Dulski M; Ziółkowski G; Chrobak A
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition.
    Di Genova D; Kolzenburg S; Vona A; Chevrel MO; Hess KU; Neuville DR; Ertel-Ingrisch W; Romano C; Dingwell DB
    J Geophys Res Planets; 2016 May; 121(5):740-752. PubMed ID: 27840783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-clinical evaluation of an image-guided in-situ Raman spectroscopy navigation system for targeted prostate cancer interventions.
    Shams R; Picot F; Grajales D; Sheehy G; Dallaire F; Birlea M; Saad F; Trudel D; Menard C; Leblond F; Kadoury S
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):867-876. PubMed ID: 32227280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Heavy Ion Irradiation on the Forward Dissolution Rate of Borosilicate Glasses Studied in Situ and Real Time by Fluid-Cell Raman Spectroscopy.
    Lönartz MI; Dohmen L; Lenting C; Trautmann C; Lang M; Geisler T
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation field heterogeneity in punch indentation.
    Murthy TG; Saldana C; Hudspeth M; M'Saoubi R
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130807. PubMed ID: 24910521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soda-lime silicate glass under hydrostatic pressure and indentation: a micro-Raman study.
    Deschamps T; Martinet C; Bruneel JL; Champagnon B
    J Phys Condens Matter; 2011 Jan; 23(3):035402. PubMed ID: 21406864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate chemical analysis of volcanic glasses using Raman spectroscopy.
    Di Genova D; Morgavi D; Hess KU; Neuville DR; Borovkov N; Perugini D; Dingwell DB
    J Raman Spectrosc; 2015 Dec; 46(12):1235-1244. PubMed ID: 27656038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness.
    Töyräs J; Lyyra-Laitinen T; Niinimäki M; Lindgren R; Nieminen MT; Kiviranta I; Jurvelin JS
    J Biomech; 2001 Feb; 34(2):251-6. PubMed ID: 11165290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation.
    Caron A; Bennewitz R
    Beilstein J Nanotechnol; 2015; 6():1721-32. PubMed ID: 26425424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural responses of Zirconia materials to in-situ SEM nanoindentation.
    Juri AZ; Basak AK; Yin L
    J Mech Behav Biomed Mater; 2021 Jun; 118():104450. PubMed ID: 33740687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region.
    Santos LF; Wolthuis R; Koljenović S; Almeida RM; Puppels GJ
    Anal Chem; 2005 Oct; 77(20):6747-52. PubMed ID: 16223266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional Effects on Indentation Mechanical Properties of Chemically Strengthened TiO
    Karlsson S
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Heterodyne Raman Spectrometer (SHRS) for In Situ Chemical Sensing Using Sapphire and Silica Optical Fiber Raman Probes.
    Ottaway JM; Allen A; Waldron A; Paul PH; Angel SM; Carter JC
    Appl Spectrosc; 2019 Oct; 73(10):1160-1171. PubMed ID: 31397584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si.
    Friedman LH; Vaudin MD; Stranick SJ; Stan G; Gerbig YB; Osborn W; Cook RF
    Ultramicroscopy; 2016 Apr; 163():75-86. PubMed ID: 26939030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of In Situ Indentation Protocol to Map the Mechanical Properties of Articular Cartilage.
    Berni M; Erani P; Lopomo NF; Baleani M
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.