These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 32855633)
1. The Effects of 1 mA tACS and tRNS on Children/Adolescents and Adults: Investigating Age and Sensitivity to Sham Stimulation. Splittgerber M; Suwelack JH; Kadish NE; Moliadze V Neural Plast; 2020; 2020():8896423. PubMed ID: 32855633 [TBL] [Abstract][Full Text] [Related]
2. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability. Zhang M; Cheng I; Sasegbon A; Dou Z; Hamdy S Neurogastroenterol Motil; 2021 Sep; 33(9):e14173. PubMed ID: 34081376 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of tRNS and 140 Hz tACS on motor cortex excitability seemingly dependent on sensitivity to sham stimulation. Kortuem V; Kadish NE; Siniatchkin M; Moliadze V Exp Brain Res; 2019 Nov; 237(11):2885-2895. PubMed ID: 31482197 [TBL] [Abstract][Full Text] [Related]
4. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Pozdniakov I; Vorobiova AN; Galli G; Rossi S; Feurra M Sci Rep; 2021 Feb; 11(1):3854. PubMed ID: 33594133 [TBL] [Abstract][Full Text] [Related]
5. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults. Fresnoza S; Christova M; Feil T; Gallasch E; Körner C; Zimmer U; Ischebeck A Exp Brain Res; 2018 Oct; 236(10):2573-2588. PubMed ID: 29943239 [TBL] [Abstract][Full Text] [Related]
6. Induction of interhemispheric facilitation by short bursts of transcranial alternating current stimulation. Calvert GHM; Carson RG Neurosci Lett; 2023 Apr; 803():137190. PubMed ID: 36921664 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Inukai Y; Saito K; Sasaki R; Tsuiki S; Miyaguchi S; Kojima S; Masaki M; Otsuru N; Onishi H Front Hum Neurosci; 2016; 10():668. PubMed ID: 28082887 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability. Ho KA; Taylor JL; Loo CK J ECT; 2015 Mar; 31(1):67-72. PubMed ID: 25010032 [TBL] [Abstract][Full Text] [Related]
9. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability. Nakazono H; Ogata K; Kuroda T; Tobimatsu S PLoS One; 2016; 11(9):e0162521. PubMed ID: 27607431 [TBL] [Abstract][Full Text] [Related]
10. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Moret B; Donato R; Nucci M; Cona G; Campana G Sci Rep; 2019 Oct; 9(1):15150. PubMed ID: 31641235 [TBL] [Abstract][Full Text] [Related]
11. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Cappon D; D'Ostilio K; Garraux G; Rothwell J; Bisiacchi P Brain Stimul; 2016; 9(4):518-24. PubMed ID: 27038707 [TBL] [Abstract][Full Text] [Related]
12. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Raco V; Bauer R; Norim S; Gharabaghi A Brain Stimul; 2017; 10(6):1055-1060. PubMed ID: 28779945 [TBL] [Abstract][Full Text] [Related]
13. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Schilberg L; Engelen T; Ten Oever S; Schuhmann T; de Gelder B; de Graaf TA; Sack AT Cortex; 2018 Jun; 103():142-152. PubMed ID: 29635161 [TBL] [Abstract][Full Text] [Related]
14. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Naro A; Bramanti A; Leo A; Manuli A; Sciarrone F; Russo M; Bramanti P; Calabrò RS Brain Struct Funct; 2017 Aug; 222(6):2891-2906. PubMed ID: 28064346 [TBL] [Abstract][Full Text] [Related]
15. Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study. Guerra A; Ranieri F; Falato E; Musumeci G; Di Santo A; Asci F; Di Pino G; Suppa A; Berardelli A; Di Lazzaro V Sci Rep; 2020 May; 10(1):7695. PubMed ID: 32376946 [TBL] [Abstract][Full Text] [Related]
16. Isometric agonist and antagonist muscle activation interacts differently with 140-Hz transcranial alternating current stimulation aftereffects at different intensities. Shorafa Y; Halawa I; Hewitt M; Nitsche MA; Antal A; Paulus W J Neurophysiol; 2021 Jul; 126(1):340-348. PubMed ID: 34191638 [TBL] [Abstract][Full Text] [Related]
17. Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. Kawakami S; Inukai Y; Ikarashi H; Watanabe H; Miyaguchi S; Otsuru N; Onishi H J Clin Neurosci; 2022 Jun; 100():59-65. PubMed ID: 35421743 [TBL] [Abstract][Full Text] [Related]
18. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Laczó B; Antal A; Rothkegel H; Paulus W Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783 [TBL] [Abstract][Full Text] [Related]
19. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Therrien-Blanchet JM; Ferland MC; Badri M; Rousseau MA; Merabtine A; Boucher E; Hofmann LH; Lepage JF; Théoret H Cereb Cortex; 2023 May; 33(11):7061-7075. PubMed ID: 36749004 [TBL] [Abstract][Full Text] [Related]
20. The Effects of Monophasic Anodal Transcranial Pulsed Current Stimulation on Corticospinal Excitability and Motor Performance in Healthy Young Adults: A Randomized Double-Blinded Sham-Controlled Study. Dissanayaka T; Zoghi M; Farrell M; Egan G; Jaberzadeh S Brain Connect; 2022 Apr; 12(3):260-274. PubMed ID: 34963309 [No Abstract] [Full Text] [Related] [Next] [New Search]