These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods. Jadrich R; Schweizer KS J Chem Phys; 2011 Dec; 135(23):234902. PubMed ID: 22191900 [TBL] [Abstract][Full Text] [Related]
5. Tabular Potentials for Monte Carlo Simulation of Supertoroids with Short-Range Interactions. Hatch HW; McCann GW J Res Natl Inst Stand Technol; 2019; 124():1-11. PubMed ID: 34877184 [TBL] [Abstract][Full Text] [Related]
6. Structure and rheology of colloidal particle gels: insight from computer simulation. Dickinson E Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723 [TBL] [Abstract][Full Text] [Related]
8. Gelation of particles with short-range attraction. Lu PJ; Zaccarelli E; Ciulla F; Schofield AB; Sciortino F; Weitz DA Nature; 2008 May; 453(7194):499-503. PubMed ID: 18497820 [TBL] [Abstract][Full Text] [Related]
9. Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics. Gallegos JAS; Perdomo-Pérez R; Valadez-Pérez NE; Castañeda-Priego R Phys Rev E; 2021 Dec; 104(6-1):064606. PubMed ID: 35030878 [TBL] [Abstract][Full Text] [Related]
10. Dynamic arrest of adhesive hard rod dispersions. Murphy RP; Hatch HW; Mahynski NA; Shen VK; Wagner NJ Soft Matter; 2020 Feb; 16(5):1279-1286. PubMed ID: 31913393 [TBL] [Abstract][Full Text] [Related]
11. Self-Assembly of All-DNA Rods with Controlled Patchiness. Gvozden K; Novak Ratajczak S; Orellana AG; Kentzinger E; Rücker U; Dhont JKG; De Michele C; Stiakakis E Small; 2022 Feb; 18(5):e2104510. PubMed ID: 34837474 [TBL] [Abstract][Full Text] [Related]
12. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering. Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736 [TBL] [Abstract][Full Text] [Related]
13. Role of interaction range on the microstructure and dynamics of attractive colloidal systems. Mangal D; Jamali S Soft Matter; 2024 Jun; 20(22):4466-4473. PubMed ID: 38787651 [TBL] [Abstract][Full Text] [Related]
14. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles. Whitelam S; Geissler PL J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126 [TBL] [Abstract][Full Text] [Related]
15. Speeding up Monte Carlo simulation of patchy hard cylinders. Orellana AG; Romani E; De Michele C Eur Phys J E Soft Matter; 2018 Apr; 41(4):51. PubMed ID: 29651630 [TBL] [Abstract][Full Text] [Related]
16. Depletion-induced percolation in networks of nanorods. Schilling T; Jungblut S; Miller MA Phys Rev Lett; 2007 Mar; 98(10):108303. PubMed ID: 17358576 [TBL] [Abstract][Full Text] [Related]
17. Self-Consistent Ornstein-Zernike Approximation (SCOZA) and exact second virial coefficients and their relationship with critical temperature for colloidal or protein suspensions with short-ranged attractive interactions. Gazzillo D; Pini D J Chem Phys; 2013 Oct; 139(16):164501. PubMed ID: 24182043 [TBL] [Abstract][Full Text] [Related]
18. Shape, geometric percolation, and electrical conductivity of clusters in suspensions of hard platelets. Atashpendar A; Ingenbrand T; Schilling T Phys Rev E; 2020 Mar; 101(3-1):032706. PubMed ID: 32289909 [TBL] [Abstract][Full Text] [Related]
19. Effect of the range of attractive interactions on crystallization, metastable phase transition, and percolation in colloidal dispersions. Fu D; Li Y; Wu J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011403. PubMed ID: 12935139 [TBL] [Abstract][Full Text] [Related]
20. Ideal rate of collision of cylinders in simple shear flow. Singh V; Koch DL; Stroock AD Langmuir; 2011 Oct; 27(19):11813-23. PubMed ID: 21846083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]