BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32855847)

  • 1. Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network.
    Musial G; Queener HM; Adhikari S; Mirhajianmoghadam H; Schill AW; Patel NB; Porter J
    Transl Vis Sci Technol; 2020 Jul; 9(2):43. PubMed ID: 32855847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel width optimized neural networks for liver and vessel segmentation in liver iron quantification.
    Liu M; Vanguri R; Mutasa S; Ha R; Liu YC; Button T; Jambawalikar S
    Comput Biol Med; 2020 Jul; 122():103798. PubMed ID: 32658724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions.
    van den Noort F; van der Vaart CH; Grob ATM; van de Waarsenburg MK; Slump CH; van Stralen M
    Ultrasound Obstet Gynecol; 2019 Aug; 54(2):270-275. PubMed ID: 30461079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images.
    Zhang Q; Sampani K; Xu M; Cai S; Deng Y; Li H; Sun JK; Karniadakis GE
    Transl Vis Sci Technol; 2022 Aug; 11(8):7. PubMed ID: 35938881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning.
    Lo J; Heisler M; Vanzan V; Karst S; Matovinović IZ; Lončarić S; Navajas EV; Beg MF; Šarunić MV
    Transl Vis Sci Technol; 2020 Jul; 9(2):38. PubMed ID: 32855842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric Pancreas Segmentation on Computed Tomography: Accuracy and Efficiency of a Convolutional Neural Network Versus Manual Segmentation in 3D Slicer in the Context of Interreader Variability of Expert Radiologists.
    Khasawneh H; Patra A; Rajamohan N; Suman G; Klug J; Majumder S; Chari ST; Korfiatis P; Goenka AH
    J Comput Assist Tomogr; 2022 Nov-Dec 01; 46(6):841-847. PubMed ID: 36055122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.
    Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW
    Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis.
    Spuhler KD; Ding J; Liu C; Sun J; Serrano-Sosa M; Moriarty M; Huang C
    Magn Reson Med; 2019 Aug; 82(2):786-795. PubMed ID: 30957936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN.
    Lei Y; He X; Yao J; Wang T; Wang L; Li W; Curran WJ; Liu T; Xu D; Yang X
    Med Phys; 2021 Jan; 48(1):204-214. PubMed ID: 33128230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks.
    Cunefare D; Fang L; Cooper RF; Dubra A; Carroll J; Farsiu S
    Sci Rep; 2017 Jul; 7(1):6620. PubMed ID: 28747737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks.
    Winder A; d'Esterre CD; Menon BK; Fiehler J; Forkert ND
    Med Phys; 2020 Sep; 47(9):4199-4211. PubMed ID: 32583617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical investigation of the combination of a scanning laser ophthalmoscope and laser Doppler flowmeter.
    Michelson G; Langhans MJ; Groh MJ
    Ger J Ophthalmol; 1995 Nov; 4(6):342-9. PubMed ID: 8751099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated segmentation of an intensity calibration phantom in clinical CT images using a convolutional neural network.
    Uemura K; Otake Y; Takao M; Soufi M; Kawasaki A; Sugano N; Sato Y
    Int J Comput Assist Radiol Surg; 2021 Nov; 16(11):1855-1864. PubMed ID: 33730352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical Note: Automatic segmentation of CT images for ventral body composition analysis.
    Fu Y; Ippolito JE; Ludwig DR; Nizamuddin R; Li HH; Yang D
    Med Phys; 2020 Nov; 47(11):5723-5730. PubMed ID: 32969050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network-based automatic liver delineation on contrast-enhanced and non-contrast-enhanced CT images for radiotherapy planning.
    Sakashita N; Shirai K; Ueda Y; Ono A; Teshima T
    Rep Pract Oncol Radiother; 2020; 25(6):981-986. PubMed ID: 33100915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.