These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32855859)

  • 1. Comparison of Current Optical Coherence Tomography Angiography Methods in Imaging Retinal Hemangioblastomas.
    Reich M; Glatz A; Boehringer D; Evers C; Daniel M; Bucher F; Ludwig F; Nuessle S; Lagrèze WA; Maloca PM; Lange C; Reinhard T; Agostini H; Lang SJ
    Transl Vis Sci Technol; 2020 Jul; 9(8):12. PubMed ID: 32855859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined therapy guided by multimodal imaging of fifteen retinal capillary hemangioblastomas in a monocular Von Hippel- Lindau syndrome case report.
    Guo J; Du L; Zhou P; Guo X; Dai F; Jin X
    BMC Ophthalmol; 2022 May; 22(1):205. PubMed ID: 35524216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization.
    Miller AR; Roisman L; Zhang Q; Zheng F; Rafael de Oliveira Dias J; Yehoshua Z; Schaal KB; Feuer W; Gregori G; Chu Z; Chen CL; Kubach S; An L; Stetson PF; Durbin MK; Wang RK; Rosenfeld PJ
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1499-1505. PubMed ID: 28273316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of optical coherence tomography angiography and fundus fluorescein angiography features of retinal capillary hemangioblastoma.
    Sagar P; Rajesh R; Shanmugam M; Konana VK; Mishra D
    Indian J Ophthalmol; 2018 Jun; 66(6):872-876. PubMed ID: 29786009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography.
    Novais EA; Adhi M; Moult EM; Louzada RN; Cole ED; Husvogt L; Lee B; Dang S; Regatieri CV; Witkin AJ; Baumal CR; Hornegger J; Jayaraman V; Fujimoto JG; Duker JS; Waheed NK
    Am J Ophthalmol; 2016 Apr; 164():80-8. PubMed ID: 26851725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Coherence Tomography Angiography-Navigated Laser Photocoagulation of Retinal Hemangioblastomas in Patients With von Hippel-Lindau Disease.
    Laich Y; Farassat N; Grewing V; Boehringer D; Bucher F; Maloca PM; Reinhard T; Lang SJ; Agostini H; Reich M
    Transl Vis Sci Technol; 2024 Jul; 13(7):8. PubMed ID: 38980260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWEPT-SOURCE AND SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY VERSUS DYE ANGIOGRAPHY IN THE MEASUREMENT OF TYPE 1 NEOVASCULARIZATION.
    Cicinelli MV; Cavalleri M; Consorte AC; Rabiolo A; Sacconi R; Bandello F; Querques G
    Retina; 2020 Mar; 40(3):499-506. PubMed ID: 30649078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms.
    Zhang Q; Chen CL; Chu Z; Zheng F; Miller A; Roisman L; Rafael de Oliveira Dias J; Yehoshua Z; Schaal KB; Feuer W; Gregori G; Kubach S; An L; Stetson PF; Durbin MK; Rosenfeld PJ; Wang RK
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1506-1513. PubMed ID: 28273317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes.
    Salz DA; de Carlo TE; Adhi M; Moult E; Choi W; Baumal CR; Witkin AJ; Duker JS; Fujimoto JG; Waheed NK
    JAMA Ophthalmol; 2016 Jun; 134(6):644-50. PubMed ID: 27055248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion.
    Kakihara S; Hirano T; Iesato Y; Imai A; Toriyama Y; Murata T
    Jpn J Ophthalmol; 2018 May; 62(3):274-279. PubMed ID: 29594610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of swept-source versus spectral-domain optical coherence tomography angiography for detection of macular neovascularization.
    Lentzsch A; Schöllhorn L; Schnorr C; Siggel R; Liakopoulos S
    Graefes Arch Clin Exp Ophthalmol; 2022 Jan; 260(1):113-119. PubMed ID: 34226972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VASCULAR ABNORMALITIES IN DIABETIC RETINOPATHY ASSESSED WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WIDEFIELD IMAGING.
    Schaal KB; Munk MR; Wyssmueller I; Berger LE; Zinkernagel MS; Wolf S
    Retina; 2019 Jan; 39(1):79-87. PubMed ID: 29135803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLINICALLY INVISIBLE RETINAL HEMANGIOBLASTOMAS DETECTED BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY AND FLUORESCEIN ANGIOGRAPHY IN TWINS.
    Schoen MA; Shields CL; Say EAT; Douglass AM; Shields JA; Jampol LM
    Retin Cases Brief Rep; 2018 Winter; 12(1):12-16. PubMed ID: 27533642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal hemangioblastoma vascular detail elucidated on swept source optical coherence tomography angiography.
    Custo Greig EP; Duker JS
    Am J Ophthalmol Case Rep; 2021 Mar; 21():101005. PubMed ID: 33385098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical evaluation of neovascular and non-neovascular chronic central serous chorioretinopathy (CSC) diagnosed by swept source optical coherence tomography angiography (SS OCTA).
    Sulzbacher F; Schütze C; Burgmüller M; Vécsei-Marlovits PV; Weingessel B
    Graefes Arch Clin Exp Ophthalmol; 2019 Aug; 257(8):1581-1590. PubMed ID: 31037488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing imaging capabilities of spectral domain and swept source optical coherence tomography angiography in healthy subjects and central serous retinopathy.
    Wang F; Zhang Q; Deegan AJ; Chang J; Wang RK
    Eye Vis (Lond); 2018; 5():19. PubMed ID: 30094272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA).
    Laíns I; Wang JC; Cui Y; Katz R; Vingopoulos F; Staurenghi G; Vavvas DG; Miller JW; Miller JB
    Prog Retin Eye Res; 2021 Sep; 84():100951. PubMed ID: 33516833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a Novel Automated Algorithm to Measure Drusen Volume and Area Using Swept Source Optical Coherence Tomography Angiography.
    Jiang X; Shen M; Wang L; de Sisternes L; Durbin MK; Feuer W; Rosenfeld PJ; Gregori G
    Transl Vis Sci Technol; 2021 Apr; 10(4):11. PubMed ID: 34003988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of wide-field swept source optical coherence tomography angiography and fundus autofluorescence in tubercular serpiginous-like choroiditis.
    Brar M; Sharma M; Grewal SPS; Grewal DS
    Indian J Ophthalmol; 2020 Jan; 68(1):106-211. PubMed ID: 31856483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Value of Optical Coherence Tomography Angiography Imaging in Diagnosis and Treatment of Hemangioblastomas in von Hippel-Lindau Disease.
    Lang SJ; Cakir B; Evers C; Ludwig F; Lange CA; Agostini HT
    Ophthalmic Surg Lasers Imaging Retina; 2016 Oct; 47(10):935-946. PubMed ID: 27759860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.