These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32855892)

  • 1. Simulation of Vitreous Traction Force and Flow Rate of High Speed Dual-Pneumatic 7500 Cuts Per Minute Vitrectomy Probes.
    Missel PJ; Ma Y; McDonell BW; Shahmirzadi D; Abulon DJK; Sarangapani R
    Transl Vis Sci Technol; 2020 Jul; 9(8):46. PubMed ID: 32855892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel probabilistic model of core vitreous traction using microsurgical vitrectomy tools.
    Lue JL; Ribeiro R; Koss MJ; Falabella P; Brant R; Humayun MS
    Graefes Arch Clin Exp Ophthalmol; 2021 Feb; 259(2):405-412. PubMed ID: 32809071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate.
    Abulon DJ
    Clin Ophthalmol; 2015; 9():253-61. PubMed ID: 25709386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine Vitreous Flow Behavior During High-Speed Vitrectomy up to 7500 Cuts per Minute.
    Abulon DJ; Buboltz DC
    Transl Vis Sci Technol; 2016 Feb; 5(1):7. PubMed ID: 26933520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance analysis of ultrahigh-speed vitreous cutter system.
    Ribeiro RM; Teixeira AG; Diniz B; Fernandes RB; Zhong Y; Kerns R; Humayun MS
    Retina; 2013 May; 33(5):928-32. PubMed ID: 23416511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Assessment of the Performance of Dual Pneumatic Vitreous Cutters According to Gauge and Cut Rate.
    Lee S; Choi KS
    Korean J Ophthalmol; 2023 Aug; 37(4):307-313. PubMed ID: 37400083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EFFECTS OF A MODIFIED VITRECTOMY PROBE IN SMALL-GAUGE VITRECTOMY: An Experimental Study on the Flow and on the Traction Exerted on the Retina.
    Rizzo S; Fantoni G; de Santis G; Lue JL; Ciampi J; Palla M; Genovesi Ebert F; Savastano A; De Maria C; Vozzi G; Brant Fernandes RA; Faraldi F; Criscenti G
    Retina; 2017 Sep; 37(9):1765-1774. PubMed ID: 27930456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.
    Brant Fernandes RA; Diniz B; Falabella P; Ribeiro R; Teixeira AG; Magalhães O; Moraes N; Maia A; Farah ME; Maia M; Humayun MS
    Ophthalmic Surg Lasers Imaging Retina; 2015 Jan; 46(1):68-72. PubMed ID: 25559512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid Dynamic Assessment of Hypersonic and Guillotine Vitrectomy Probes in Viscoelastic Vitreous Substitutes.
    Stocchino A; Nepita I; Repetto R; Dodero A; Castellano M; Ferrara M; Romano MR
    Transl Vis Sci Technol; 2020 May; 9(6):9. PubMed ID: 32821506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance analysis of new-generation vitreous cutters.
    Fang SY; DeBoer CM; Humayun MS
    Graefes Arch Clin Exp Ophthalmol; 2008 Jan; 246(1):61-7. PubMed ID: 17876598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery.
    Oshima Y; Wakabayashi T; Sato T; Ohji M; Tano Y
    Ophthalmology; 2010 Jan; 117(1):93-102.e2. PubMed ID: 19880185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a 23-gauge ultra high-speed cutter with duty cycle control.
    Diniz B; Fernandes RB; Ribeiro RM; Lue JC; Teixeira AG; Magalhães O; Maia M; Humayun MS
    Retina; 2013 May; 33(5):933-8. PubMed ID: 23416512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitreoretinal traction created by conventional cutters during vitrectomy.
    Teixeira A; Chong LP; Matsuoka N; Arana L; Kerns R; Bhadri P; Humayun M
    Ophthalmology; 2010 Jul; 117(7):1387-92.e2. PubMed ID: 20176400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidics in a dual pneumatic ultra high-speed vitreous cutter system.
    Diniz B; Ribeiro RM; Fernandes RB; Lue JC; Teixeira AG; Maia M; Humayun MS
    Ophthalmologica; 2013; 229(1):15-20. PubMed ID: 23108417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental protocol of the model to quantify traction applied to the retina by vitreous cutters.
    Teixeira A; Chong L; Matsuoka N; Arana L; Lue JC; McCormick M; Kerns R; Bhadri P; Humayun M
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4181-6. PubMed ID: 20181834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Vitreous Collagen Fragments Dimension As a Function of Vitrectomy Cut Rate.
    Rossi T; Speciale A; Menichini P; Izzotti A; D'Agostino I; Trillo C; Telani S; Querzoli G; Ripandelli G
    Transl Vis Sci Technol; 2022 Mar; 11(3):29. PubMed ID: 35333285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cut rates on fluidic behavior of chopped vitreous.
    Sharif-Kashani P; Nishida K; Pirouz Kavehpour H; Schwartz SD; Hubschman JP
    Retina; 2013 Jan; 33(1):166-9. PubMed ID: 22914683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FLUIDIC PERFORMANCE OF A DUAL-ACTION VITRECTOMY PROBE COMPARED WITH A SINGLE-ACTION PROBE.
    Steel DH; Charles M; Zhu Y; Tambat S; Irannejad AM; Charles S
    Retina; 2022 Nov; 42(11):2150-2158. PubMed ID: 35868025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cutting phases on flow rate in 20-, 23-, and 25-gauge vitreous cutters.
    Hubschman JP; Bourges JL; Tsui I; Reddy S; Yu F; Schwartz SD
    Retina; 2009 Oct; 29(9):1289-93. PubMed ID: 19730161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of millennium vitreous enhancer™ system.
    Matsuoka N; Teixeira A; Lue JC; Fang S; Kerns R; Bhadri P; Humayun M
    Ophthalmic Surg Lasers Imaging; 2011; 42(2):162-7. PubMed ID: 21210579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.