These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32855904)

  • 1. Accurate determination of laser spot position during laser powder bed fusion process thermography.
    Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N
    Manuf Lett; 2020; 23():. PubMed ID: 32855904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser spot size and scaling laws for laser beam additive manufacturing.
    Weaver JS; Heigel JC; Lane BM
    J Mater Process Technol; 2022 Jan; 73():. PubMed ID: 36733901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Sectional Melt Pool Geometry of Laser Scanned Tracks and Pads on Nickel Alloy 718 for the 2022 Additive Manufacturing Benchmark Challenges.
    Weaver JS; Deisenroth D; Mekhontsev S; Lane BM; Levine LE; Yeung H
    Integr Mater Manuf Innov; 2024; 13(2):. PubMed ID: 38903904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M.
    Höfflin D; Sauer C; Schiffler A; Hartmann J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V.
    Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing.
    Weaver JS; Schlenoff A; Deisenroth D; Moylan S
    Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates.
    Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L
    Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardness Prediction of Laser Powder Bed Fusion Product Based on Melt Pool Radiation Intensity.
    Zhang T; Zhou X; Zhang P; Duan Y; Cheng X; Wang X; Ding G
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder.
    Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing.
    Yeung H; Lane B
    Manuf Lett; 2020; 25():. PubMed ID: 34123726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology.
    Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K
    Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion.
    Fisher BA; Lane B; Yeung H; Beuth J
    Manuf Lett; 2018 Jan; 15(Pt B):119-121. PubMed ID: 29888171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency domain measurements of melt pool recoil force using modal analysis.
    Cullom T; Lough C; Altese N; Bristow D; Landers R; Brown B; Hartwig T; Barnard A; Blough J; Johnson K; Kinzel E
    Sci Rep; 2021 May; 11(1):10959. PubMed ID: 34040081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L.
    Ur Rehman A; Pitir F; Salamci MU
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.